

Norm attainment under finite-dimensional representations

Kristin Courtney
University of Virginia
joint with Tatiana Shulman

ICMOA 2018, Florianópolis

Residually Finite-Dimensional C^* -algebras

Definition

A C^* -algebra A is **residually finite-dimensional** (RFD) if it has a separating family \mathcal{F} of finite-dimensional representations.

Residually Finite-Dimensional C^* -algebras

Definition

A C^* -algebra A is **residually finite-dimensional** (RFD) if it has a separating family \mathcal{F} of finite-dimensional representations.

In other words, the direct sum of these representations yields an isometric embedding

$$\bigoplus_{\pi \in \mathcal{F}} \pi : A \rightarrow \prod_{\pi \in \mathcal{F}} \mathbb{M}_{n_\pi}.$$

Residually Finite-Dimensional C^* -algebras

Definition

A C^* -algebra A is **residually finite-dimensional** (RFD) if it has a separating family \mathcal{F} of finite-dimensional representations.

In other words, the direct sum of these representations yields an isometric embedding

$$\bigoplus_{\pi \in \mathcal{F}} \pi : A \rightarrow \prod_{\pi \in \mathcal{F}} \mathbb{M}_{n_\pi}.$$

Equivalently, A is RFD if for any $a \in A$,

$$\|a\| = \sup_{\substack{\pi \in \text{Irr}(A) \\ \dim(\pi) < \infty}} \|\pi(a)\|.$$

Key Example

Theorem (Choi, 1980)

Let \mathbb{F}_n be the free group on $n \leq \infty$ generators. The full group C^ -algebra $C^*(\mathbb{F}_n)$ is RFD.*

Key Example

Theorem (Choi, 1980)

Let \mathbb{F}_n be the free group on $n \leq \infty$ generators. The full group C^ -algebra $C^*(\mathbb{F}_n)$ is RFD.*

Theorem (Fritz-Netzer-Thom, 2014)

For $n < \infty$ and $a \in \mathbb{C}\mathbb{F}_n$, there exists a finite-dimensional representation π of $C^(\mathbb{F}_n)$ such that $\|\pi(a)\| = \|a\|_u$.*

On a dense subset of $C^*(\mathbb{F}_n)$

In particular, for every $a \in \mathbb{C}\mathbb{F}_n$,

$$\|a\|_u = \max_{\substack{\pi \in \text{Irr}(C^*(\mathbb{F}_n)) \\ \dim(\pi) < \infty}} \|\pi(a)\|;$$

On a dense subset of $C^*(\mathbb{F}_n)$

In particular, for every $a \in \mathbb{C}\mathbb{F}_n$,

$$\|a\|_u = \max_{\substack{\pi \in \text{Irr}(C^*(\mathbb{F}_n)) \\ \dim(\pi) < \infty}} \|\pi(a)\|;$$

moreover $\mathbb{C}\mathbb{F}_n$ is dense in $C^*(\mathbb{F}_n)$.

On a dense subset of $C^*(\mathbb{F}_n)$

In particular, for every $a \in \mathbb{C}\mathbb{F}_n$,

$$\|a\|_u = \max_{\substack{\pi \in \text{Irr}(C^*(\mathbb{F}_n)) \\ \dim(\pi) < \infty}} \|\pi(a)\|;$$

moreover $\mathbb{C}\mathbb{F}_n$ is dense in $C^*(\mathbb{F}_n)$.

Corollary

$C^*(\mathbb{F}_n)$ is RFD.

Finite-dimensional norm-attaining elements

For a C^* -algebra A , let $A_{\mathcal{F}}$ denote its subset of elements that attain their norm under a finite-dimensional representation, i.e.

$$A_{\mathcal{F}} = \left\{ a \in A : \|a\| = \max_{\substack{\pi \in \text{Irr}(A) \\ \dim(\pi) < \infty}} \|\pi(a)\| \right\}.$$

Finite-dimensional norm-attaining elements

For a C^* -algebra A , let $A_{\mathcal{F}}$ denote its subset of elements that attain their norm under a finite-dimensional representation, i.e.

$$A_{\mathcal{F}} = \left\{ a \in A : \|a\| = \max_{\substack{\pi \in \text{Irr}(A) \\ \dim(\pi) < \infty}} \|\pi(a)\| \right\}.$$

Proposition

For any C^ -algebra A , if $A_{\mathcal{F}}$ is dense in A , then A is RFD.*

Finite-dimensional norm-attaining elements

For a C^* -algebra A , let $A_{\mathcal{F}}$ denote its subset of elements that attain their norm under a finite-dimensional representation, i.e.

$$A_{\mathcal{F}} = \left\{ a \in A : \|a\| = \max_{\substack{\pi \in \text{Irr}(A) \\ \dim(\pi) < \infty}} \|\pi(a)\| \right\}.$$

Proposition

For any C^* -algebra A , if $A_{\mathcal{F}}$ is dense in A , then A is RFD.

What about the converse? Is it true that

$$A \text{ RFD} \implies A = \overline{A_{\mathcal{F}}}?$$

Dense subsets

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- ① A is RFD.
- ② $A = \overline{A_{\mathcal{F}}}$

Dense subsets

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- ① A is RFD.
- ② $A = \overline{A_{\mathcal{F}}}$

In other words, finite-dimensional irreps are dense among the irreps of A iff elements that attain their norms under some finite-dimensional irrep are dense among elements of A .

Dense subsets

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- ① A is RFD.
- ② $A = \overline{A_{\mathcal{F}}}$

In other words, finite-dimensional irreps are dense among the irreps of A iff elements that attain their norms under some finite-dimensional irrep are dense among elements of A .

Proof.

Fun with functional calculus

The whole algebra?

What about when $A_{\mathcal{F}} = A$?

The whole algebra?

What about when $A_{\mathcal{F}} = A$?

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- 1 $A = A_{\mathcal{F}}$.
- 2 All irreducible representations of A are finite-dimensional.

The whole algebra?

What about when $A_{\mathcal{F}} = A$?

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- 1 $A = A_{\mathcal{F}}$.
- 2 All irreducible representations of A are finite-dimensional.

Definition

We call C^* -algebras satisfying any of these three criteria **FDI**.

The whole algebra?

What about when $A_{\mathcal{F}} = A$?

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- 1 $A = A_{\mathcal{F}}$.
- 2 All irreducible representations of A are finite-dimensional.

Definition

We call C^* -algebras satisfying any of these three criteria **FDI**.

(This is weaker than subhomogeneity.)

Implications for $C^*(\mathbb{F}_n)$

Theorem (Fritz-Netzer-Thom)

For $n < \infty$,

$$\mathbb{C}\mathbb{F}_n \subset C^*(\mathbb{F}_n)_{\mathcal{F}} \subset C^*(\mathbb{F}_n).$$

Implications for $C^*(\mathbb{F}_n)$

Theorem (Fritz-Netzer-Thom)

For $n < \infty$,

$$\mathbb{C}\mathbb{F}_n \subset C^*(\mathbb{F}_n)_{\mathcal{F}} \subset C^*(\mathbb{F}_n).$$

Corollary (C.-Shulman, 2017)

For $1 < n < \infty$,

$$\mathbb{C}\mathbb{F}_n \subset C^*(\mathbb{F}_n)_{\mathcal{F}} \subsetneq C^*(\mathbb{F}_n).$$

The whole algebra

Theorem (C.-Shulman, 2017)

For any C^ -algebra A , the following are equivalent.*

- 1 $A = A_{\mathcal{F}}$.
- 2 *All irreducible representations of A are finite-dimensional.*

The whole algebra

Theorem (C.-Shulman, 2017)

For any C^* -algebra A , the following are equivalent.

- 1 $A = A_{\mathcal{F}}$.
- 2 All irreducible representations of A are finite-dimensional.
- 3 A has no simple infinite-dimensional AF subquotient.

AF C^* -algebras

Definition

We say a C^* -algebra B is **Approximately Finite-Dimensional** (AF) if it contains a nested sequence of finite-dimensional C^* -subalgebras

$$B_1 \subseteq B_2 \subseteq \dots \subseteq B$$

such that $B = \overline{\bigcup_n B_n}$.

Two key examples:

- The CAR algebra

$$\mathbb{C} \subset \mathbb{M}_2(\mathbb{C}) \subset \mathbb{M}_4(\mathbb{C}) \subset \dots \subset \mathbb{M}_{2^\infty}$$

with the embeddings $a \mapsto a \oplus a$.

Two key examples:

- The CAR algebra

$$\mathbb{C} \subset \mathbb{M}_2(\mathbb{C}) \subset \mathbb{M}_4(\mathbb{C}) \subset \dots \subset \mathbb{M}_{2^\infty}$$

with the embeddings $a \mapsto a \oplus a$.

- Compact operators on ℓ^2

$$\mathbb{C} \subset \mathbb{M}_2(\mathbb{C}) \subset \mathbb{M}_3(\mathbb{C}) \subset \dots \subset \mathcal{K}$$

with the embeddings $a \mapsto a \oplus 0$.

Two key examples:

- The CAR algebra

$$\mathbb{C} \subset \mathbb{M}_2(\mathbb{C}) \subset \mathbb{M}_4(\mathbb{C}) \subset \dots \subset \mathbb{M}_{2^\infty}$$

with the embeddings $a \mapsto a \oplus a$.

- Compact operators on ℓ^2

$$\mathbb{C} \subset \mathbb{M}_2(\mathbb{C}) \subset \mathbb{M}_3(\mathbb{C}) \subset \dots \subset \mathcal{K}$$

with the embeddings $a \mapsto a \oplus 0$.

Both of these are *simple AF C^* -algebras*.

Proof Outline

$$A = A_{\mathcal{F}}$$

All irreducible representations of A are finite-dimensional.

A has no simple infinite-dimensional AF subquotient.

Proof Outline

$$A = A_{\mathcal{F}}$$

$$\begin{matrix} \text{GNS} \\ \uparrow \end{matrix}$$

All irreducible representations of A are finite-dimensional.

A has no simple infinite-dimensional AF subquotient

Proof Outline

$$A = A_{\mathcal{F}}$$

GNS $\uparrow\!\!\uparrow$

All irreducible representations of A are finite-dimensional.

Glimm, Sakai $\uparrow\!\!\uparrow$ non-type I $\Rightarrow \mathbb{M}_{2^\infty}$

A has no simple infinite-dimensional AF subquotient

Proof Outline

$$A = A_{\mathcal{F}}$$

GNS $\uparrow\!\!\uparrow$

All irreducible representations of A are finite-dimensional.

Glimm, Sakai $\uparrow\!\!\uparrow$ type I $\Rightarrow \mathcal{K}$

A has no simple infinite-dimensional AF subquotient

AF Mapping Telescopes

Definition (Brown)

For an AF C^* -algebra B with inductive sequence of finite-dimensional subalgebras (B_n) , we define **mapping telescope** $T(B_1, B_2, \dots)$ (or just $T(B)$) by

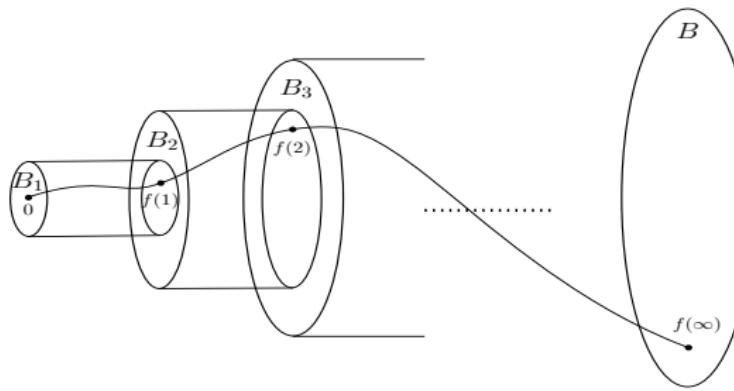
$$T(B) = \{f \in C_0((0, \infty], B) \mid f(t) \in B_n \ \forall \ t \leq n\}.$$

AF Mapping Telescopes

Definition (Brown)

For an AF C^* -algebra B with inductive sequence of finite-dimensional subalgebras (B_n) , we define **mapping telescope** $T(B_1, B_2, \dots)$ (or just $T(B)$) by

$$T(B) = \{f \in C_0((0, \infty], B) \mid f(t) \in B_n \ \forall \ t \leq n\}.$$



Nice C^* -algebras

AF Mapping Telescopes are particularly nice for two reasons:

Nice C^* -algebras

AF Mapping Telescopes are particularly nice for two reasons:

First, it is easy to build elements to meet certain specifications.

Nice C^* -algebras

AF Mapping Telescopes are particularly nice for two reasons:

First, it is easy to build elements to meet certain specifications.

Lemma

If B is a simple, infinite-dimensional AF algebra, then there exists $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

Nice C^* -algebras

AF Mapping Telescopes are particularly nice for two reasons:

Second,

Theorem (Loring-Pedersen, 1998)

If B is an AF algebra, then $T(B)$ is projective.

Nice C^* -algebras

AF Mapping Telescopes are particularly nice for two reasons:

Second,

Theorem (Loring-Pedersen, 1998)

If B is an AF algebra, then $T(B)$ is projective.

In other words, for any C^* -algebras A and C with a surjective $*$ -homomorphism $q : A \twoheadrightarrow C$, any $*$ -homomorphism $\phi : T(B) \rightarrow C$ lifts to a $*$ -homomorphism $\psi : T(B) \rightarrow A$ so that $\phi = q \circ \psi$, giving us a commutative diagram:

$$\begin{array}{ccc} & & A \\ & \nearrow \psi & \downarrow q \\ T(B) & \xrightarrow{\phi} & C \end{array}$$

Back to the proof

Theorem (C.-Shulman, 2017)

For any C^ -algebra A , the following are equivalent.*

- ① $A = A_{\mathcal{F}}$.
- ② *All irreducible representations of A are finite-dimensional.*
- ③ *A has no simple infinite-dimensional AF subquotient.*

Simple inf-dim AF subquotient $\Rightarrow A_{\mathcal{F}} \subsetneq A$

Suppose $A_0 \subseteq A$, B simple, infinite-dimensional AF, and $q : A_0 \twoheadrightarrow B$ a surjective $*$ -homomorphism.

Simple inf-dim AF subquotient $\Rightarrow A_{\mathcal{F}} \subsetneq A$

Suppose $A_0 \subseteq A$, B simple, infinite-dimensional AF, and $q : A_0 \twoheadrightarrow B$ a surjective $*$ -homomorphism.

$$\begin{array}{ccc} A_0 & \subseteq & A \\ \downarrow q & & \\ T(B) & & B \end{array}$$

Simple inf-dim AF subquotient $\Rightarrow A_{\mathcal{F}} \subsetneq A$

Suppose $A_0 \subseteq A$, B simple, infinite-dimensional AF, and $q : A_0 \twoheadrightarrow B$ a surjective $*$ -homomorphism.

$$\begin{array}{ccc} A_0 & \subseteq & A \\ & \downarrow q & \\ T(B) & \xrightarrow{\text{ev}_\infty} & B \end{array}$$

Let $\text{ev}_\infty : T(B) \rightarrow B$ be the map that sends $f \mapsto f(\infty)$,

Simple inf-dim AF subquotient $\Rightarrow A_{\mathcal{F}} \subsetneq A$

Suppose $A_0 \subseteq A$, B simple, infinite-dimensional AF, and $q : A_0 \rightarrow B$ a surjective $*$ -homomorphism.

$$\begin{array}{ccc}
 & A_0 & \subseteq A \\
 \psi \nearrow & \downarrow q & \\
 T(B) & \xrightarrow{\text{ev}_\infty} & B
 \end{array}$$

Let $\text{ev}_\infty : T(B) \rightarrow B$ be the map that sends $f \mapsto f(\infty)$, and let $\psi : T(B) \rightarrow A_0$ of ev_∞ be the $*$ -homomorphism guaranteed by the projectivity of $T(B)$.

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccc} & A_0 & \subseteq A \\ \psi \nearrow & \downarrow q & \\ T(B) & \xrightarrow{ev_\infty} & B \end{array}$$

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccc} & A_0 & \subseteq A \\ \psi \nearrow & \downarrow q & \\ T(B) & \xrightarrow{ev_{\infty}} & B \end{array}$$

Let $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccc} & A_0 & \subseteq A \\ \psi \nearrow & \downarrow q & \\ T(B) & \xrightarrow{ev_{\infty}} & B \end{array}$$

Let $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

Then $\|\psi(f)\| = \|f\|$.

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccccc}
 & & A_0 & \subseteq & A \\
 & \nearrow \psi & \downarrow q & & \searrow \pi \\
 T(B) & \xrightarrow{ev_{\infty}} & B & & \mathbb{M}_k
 \end{array}$$

Let $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

Then $\|\psi(f)\| = \|f\|$.

Suppose $\psi(f) \in A_{\mathcal{F}}$.

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccccc}
 & & A_0 & \subseteq & A \\
 & \nearrow \psi & \downarrow q & & \searrow \pi \\
 T(B) & \xrightarrow{ev_{\infty}} & B & \xrightarrow{\pi|_{A_0}} & \mathbb{M}_k
 \end{array}$$

Let $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

Then $\|\psi(f)\| = \|f\|$.

Suppose $\psi(f) \in A_{\mathcal{F}}$. Then $f \in T(B)_{\mathcal{F}}$.

$A = A_{\mathcal{F}} \Rightarrow$ No simple inf-dim AF subquotients

$$\begin{array}{ccccc}
 & & A_0 & \subseteq & A \\
 & \nearrow \psi & \downarrow q & & \searrow \pi \\
 T(B) & \xrightarrow{ev_{\infty}} & B & \xrightarrow{\pi|_{A_0}} & \mathbb{M}_k
 \end{array}$$

Let $f \in T(B) \setminus T(B)_{\mathcal{F}}$ with $\|f\| = \|f(\infty)\|$.

Then $\|\psi(f)\| = \|f\|$.

Suppose $\psi(f) \in A_{\mathcal{F}}$. Then $f \in T(B)_{\mathcal{F}}$. □

Algebraic Structure?

Does $A_{\mathcal{F}}$ have any algebraic structure?

Algebraic Structure?

Does $A_{\mathcal{F}}$ have any algebraic structure? Is it additively/
multiplicatively closed?

Algebraic Structure?

Does $A_{\mathcal{F}}$ have any algebraic structure? Is it additively/multiplicatively closed?

Theorem (C.-Shulman, 2017)

For an RFD C^* -algebra A , the following are equivalent.

- ① $A = A_{\mathcal{F}}$.
- ② $A_{\mathcal{F}}$ is additively closed.
- ③ $A_{\mathcal{F}}$ is multiplicatively closed.

Algebraic Structure?

Does $A_{\mathcal{F}}$ have any algebraic structure? Is it additively/multiplicatively closed?

Theorem (C.-Shulman, 2017)

For an RFD C^* -algebra A , the following are equivalent.

- ① $A = A_{\mathcal{F}}$.
- ② $A_{\mathcal{F}}$ is additively closed.
- ③ $A_{\mathcal{F}}$ is multiplicatively closed.

Corollary

For $1 < n < \infty$,

$$\mathbb{C}\mathbb{F}_n \subsetneq C^*(\mathbb{F}_n)_{\mathcal{F}} \subsetneq C^*(\mathbb{F}_n).$$

Sequences of finite-dimensional norms

Assume that A has irreducible representations of all finite dimensions.

Definition

For each $n \in \mathbb{N}$, define the seminorm $\|\cdot\|_{\mathbb{M}_n}$ on A by

$$\|a\|_{\mathbb{M}_n} = \sup\{\|\pi(a)\| : \pi : A \rightarrow \mathbb{M}_k, k \leq n\}.$$

Sequences of finite-dimensional norms

Assume that A has irreducible representations of all finite dimensions.

Definition

For each $n \in \mathbb{N}$, define the seminorm $\|\cdot\|_{\mathbb{M}_n}$ on A by

$$\|a\|_{\mathbb{M}_n} = \sup\{\|\pi(a)\| : \pi : A \rightarrow \mathbb{M}_k, k \leq n\}.$$

Then for each $a \in A$, we can form the non-decreasing sequence

$$(\|a\|_{\mathbb{M}_n})_{n \in \mathbb{N}} \in \ell_+^\infty.$$

How do your norms grow?

What sort of sequences $(\|a\|_{M_n})$ can we witness?

How do your norms grow?

What sort of sequences $(\|a\|_{M_n})$ can we witness?

For example, knowing a C^* -algebra is RFD tells us *that*
 $\|a\|_{M_n} \nearrow \|a\|$ as $n \rightarrow \infty$ for every $a \in A$.

How do your norms grow?

What sort of sequences $(\|a\|_{M_n})$ can we witness?

For example, knowing a C^* -algebra is RFD tells us *that* $\|a\|_{M_n} \nearrow \|a\|$ as $n \rightarrow \infty$ for every $a \in A$. But what can be said about *how* the norms of the images grow as n grows?

How do your norms grow?

What sort of sequences $(\|a\|_{M_n})$ can we witness?

For example, knowing a C^* -algebra is RFD tells us *that* $\|a\|_{M_n} \nearrow \|a\|$ as $n \rightarrow \infty$ for every $a \in A$. But what can be said about *how* the norms of the images grow as n grows?

Question

Given a non-decreasing sequence $(\lambda_n) \in \ell_+^\infty$, can we find an $a \in A$ with $\|a\|_{M_n} = \lambda_n$ for each n ?

A partial answer

Theorem (C.-Shulman, 2017)

Suppose A has irreducible representations of all finite dimensions. Then for any bounded non-decreasing sequence $(\lambda_n)_{n \in \mathbb{N}}$ of non-negative real numbers that is eventually constant, there exists an $a \in A$ so that

$$(\|a\|_{\mathbb{M}_n})_{n \in \mathbb{N}} = (\lambda_n)_{n \in \mathbb{N}}.$$

Epilogue

Theorem (Shulman, 2017)

The following are equivalent for a C^ -algebra A .*

- ① *A is type I.*
- ② *The spectral radius is continuous on A .*
- ③ *The norm limit of a sequence of nilpotents in A must have zero spectrum.*

Epilogue

Theorem (Shulman, 2017)

The following are equivalent for a C^ -algebra A .*

- ① *A is type I.*
- ② *The spectral radius is continuous on A .*
- ③ *The norm limit of a sequence of nilpotents in A must have zero spectrum.*

Proof.

$(1) \Rightarrow (2)$ (V. Shulman-Turovskii)

Epilogue

Theorem (Shulman, 2017)

The following are equivalent for a C^ -algebra A .*

- ① *A is type I.*
- ② *The spectral radius is continuous on A .*
- ③ *The norm limit of a sequence of nilpotents in A must have zero spectrum.*

Proof.

$(1) \Rightarrow (2)$ (V. Shulman-Turovskii)

$(2) \Rightarrow (3)$ Contrapositive is clear.

Epilogue

Theorem (Shulman, 2017)

The following are equivalent for a C^ -algebra A .*

- ① *A is type I.*
- ② *The spectral radius is continuous on A .*
- ③ *The norm limit of a sequence of nilpotents in A must have zero spectrum.*

Proof.

$(1) \Rightarrow (2)$ (V. Shulman-Turovskii)

$(2) \Rightarrow (3)$ Contrapositive is clear.

$(3) \Rightarrow (1)$ Lifting argument with $T(\mathbb{M}_{2^\infty})$. □

Thank you.

Some Recommended Reading

K. Courtney and T. Shulman.

Elements of C^* -algebras attaining their norm in a finite-dimensional representation,

Canad. J. Math. to appear. arxiv:1707.01949.

T. Loring and G.K. Pedersen.

Projectivity, transitivity, and AF-telescopes,

Trans. Amer. Math. Soc. **350** (1998), 4313-4339.

T. Fritz, T. Netzer, A. Thom,

Can you compute the operator norm?

Proc. Amer. Math. Soc. **142** (2014), 4265-4276.

T. Shulman,

Continuity of spectral radius and type I C^* -algebras,
preprint (2017), arXiv:1707.08848.