

Amalgamated free products of strongly RFD C^* -algebras over central subalgebras

Kristin Courtney
WWU Münster
joint with Tatiana Shulman

ECOAS 2018, TCU

Residually finite-dimensional C^* -algebras

Definition

A C^* -algebra A is **residually finite-dimensional** (RFD) if it has a separating family \mathcal{F} of finite-dimensional representations.

Residually finite-dimensional C^* -algebras

Definition

A C^* -algebra A is **residually finite-dimensional** (RFD) if it has a separating family \mathcal{F} of finite-dimensional representations.

In other words, the direct sum of these representations yields an isometric embedding

$$\bigoplus_{\pi \in \mathcal{F}} \pi : A \rightarrow \prod_{\pi \in \mathcal{F}} \mathbb{M}_{n_\pi}.$$

Analogy with discrete groups

Analogies with discrete groups

Residual finite-dimensionality can be thought of as a C^* -analogue of maximal almost periodicity for groups.

Definition

A discrete group G is **maximally almost periodic (MAP)** if it has a separating family of finite-dimensional unitary representations.

Analogy with discrete groups

Residual finite-dimensionality can be thought of as a C^* -analogue of maximal almost periodicity for groups.

Definition

A discrete group G is **maximally almost periodic** (MAP) if it has a separating family of finite-dimensional unitary representations.

Sometimes we even see it as an analogue to residual finiteness.

Definition

A discrete group G is **residually finite** (RF) if it has a separating family of finite quotients.

Analogies with discrete groups

Residual finite-dimensionality can be thought of as a C^* -analogue of maximal almost periodicity for groups.

Definition

A discrete group G is **maximally almost periodic (MAP)** if it has a separating family of finite-dimensional unitary representations.

Sometimes we even see it as an analogue to residual finiteness.

Definition

A discrete group G is **residually finite (RF)** if it has a separating family of finite quotients.

Theorem (Mal'cev, 1940)

Let G be a discrete group. If G is RF, then it is MAP, and the converse holds when G is finitely generated.

Examples from discrete groups

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Theorem (Bekka-Louvet, 1999)

If G is amenable, then the converse holds.

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Theorem (Bekka-Louvet, 1999)

If G is amenable, then the converse holds.

Example

$C^*(G)$ is RFD when G is

- virtually abelian (i.e. G has a finite index abelian subgroup)

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Theorem (Bekka-Louvet, 1999)

If G is amenable, then the converse holds.

Example

$C^*(G)$ is RFD when G is

- virtually abelian (i.e. G has a finite index abelian subgroup) or
- finitely generated and nilpotent.

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Theorem (Bekka-Louvet, 1999)

If G is amenable, then the converse holds.

Example

$C^*(G)$ is RFD when G is

- virtually abelian (i.e. G has a finite index abelian subgroup) or
- finitely generated and nilpotent.

Theorem (Choi, 1980)

$C^*(\mathbb{F}_2)$ is RFD.

Examples from discrete groups

Let G be a discrete group. If $C^*(G)$ is RFD, then G is MAP.

Theorem (Bekka-Louvet, 1999)

If G is amenable, then the converse holds.

Example

$C^*(G)$ is RFD when G is

- virtually abelian (i.e. G has a finite index abelian subgroup) or
- finitely generated and nilpotent.

Theorem (Choi, 1980)

$C^*(\mathbb{F}_2)$ is RFD.

What about $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$?

More examples?

Permanence Properties: Free Products

Question

When is the free product of two RF/ MAP groups RF/ MAP?

Permanence Properties: Free Products

Question

When is the free product of two RF/ MAP groups RF/ MAP?

Question

When is the free product of two separable RFD C^ -algebras RFD?*

Full free products of C^* -algebras

Definition

Given C^* -algebras A_1 and A_2 , their **full free product**, $A_1 * A_2$ is the completion of the free $*$ -algebra generated by $A_1 \sqcup A_2$ with respect to the largest C^* -norm whose restriction to each A_i yields the original norm.

Full free products of C^* -algebras

This means that $A_1 * A_2$ is a C^* -algebra such that

- ① there exist embeddings $\iota_i : A_i \rightarrow A_1 * A_2$,

Full free products of C^* -algebras

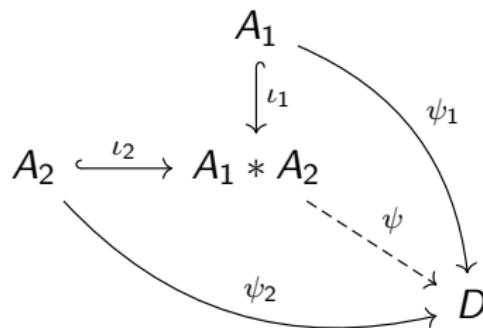
This means that $A_1 * A_2$ is a C^* -algebra such that

- ① there exist embeddings $\iota_i : A_i \rightarrow A_1 * A_2$, and
- ② for any other C^* -algebra D and $*$ -homomorphisms $\psi_i : A_i \rightarrow D$,

Full free products of C^* -algebras

This means that $A_1 * A_2$ is a C^* -algebra such that

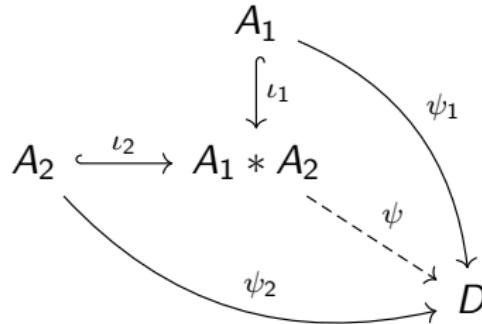
- ① there exist embeddings $\iota_i : A_i \rightarrow A_1 * A_2$, and
- ② for any other C^* -algebra D and $*$ -homomorphisms $\psi_i : A_i \rightarrow D$, there exists a unique $\psi : A_1 * A_2 \rightarrow D$ such that $\psi_i = \psi \circ \iota_i$.



Full free products of C^* -algebras

This means that $A_1 * A_2$ is a C^* -algebra such that

- ① there exist embeddings $\iota_i : A_i \rightarrow A_1 * A_2$, and
- ② for any other C^* -algebra D and $*$ -homomorphisms $\psi_i : A_i \rightarrow D$, there exists a unique $\psi : A_1 * A_2 \rightarrow D$ such that $\psi_i = \psi \circ \iota_i$.



If we assume the A_i , D , and all the maps are unital, then we have the **unital full free product** $A_1 *_\mathbb{C} A_2$.

Permanence Properties: Free Products

Question

When is the free product of two RF/ MAP groups RF/ MAP?

Question

When is the free product of two separable RFD C^ -algebras RFD?*

Permanence Properties: Free Products

Question

When is the free product of two RF/ MAP groups RF/ MAP?

(Gruenberg, '57, Khan-Morris, '82) Always.

Question

When is the free product of two separable RFD C^ -algebras RFD?*

Permanence Properties: Free Products

Question

When is the free product of two RF/ MAP groups RF/ MAP?

(Gruenberg, '57, Khan-Morris, '82) Always.

Question

When is the free product of two separable RFD C^ -algebras RFD?*

(Exel-Loring, '92) Always.

Full free products of RFD C^* -algebras

Theorem (Exel-Loring, 1992)

The (unital) full free product of two (unital) RFD C^ -algebras is RFD.*

Full free products of RFD C^* -algebras

Theorem (Exel-Loring, 1992)

The (unital) full free product of two (unital) RFD C^ -algebras is RFD.*

Corollary (Choi, 1980)

$C^*(\mathbb{F}_2) = C^*(\mathbb{Z} * \mathbb{Z}) = C^*(\mathbb{Z}) *_\mathbb{C} C^*(\mathbb{Z})$ is RFD.

More examples?

Permanence Properties: Amalgamated free products

Question

When is the amalgamated free product of two RF/ MAP groups over the same subgroup RF/ MAP?

Permanence Properties: Amalgamated free products

Question

When is the amalgamated free product of two RF/ MAP groups over the same subgroup RF/ MAP?

Question

When is the amalgamated free product of two separable RFD C^ -algebras over the same C^* -subalgebra RFD?*

Amalgamated free products over common subalgebras

For C^* -algebras A_1, A_2, C with embeddings $C \hookrightarrow A_i$, the **amalgamated free product** is a C^* -algebra $A_1 *_C A_2$ together with $*$ -homomorphisms $\iota_i : A_i \rightarrow A_1 *_C A_2$ such that

Amalgamated free products over common subalgebras

For C^* -algebras A_1, A_2, C with embeddings $C \hookrightarrow A_i$, the **amalgamated free product** is a C^* -algebra $A_1 *_C A_2$ together with $*$ -homomorphisms $\iota_i : A_i \rightarrow A_1 *_C A_2$ such that

the following diagram
commutes,

$$\begin{array}{ccc} C & \xhookrightarrow{\quad} & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

Amalgamated free products over common subalgebras

For C^* -algebras A_1, A_2, C with embeddings $C \hookrightarrow A_i$, the **amalgamated free product** is a C^* -algebra $A_1 *_C A_2$ together with $*$ -homomorphisms $\iota_i : A_i \rightarrow A_1 *_C A_2$ such that

the following diagram
commutes,

$$\begin{array}{ccc} C & \hookrightarrow & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

and commutative diagram

$$\begin{array}{ccccc} C & \hookrightarrow & A_1 & & \\ \downarrow & & \downarrow & & \downarrow \psi_1 \\ A_2 & & & & \\ & \swarrow \psi_2 & & & \searrow \\ & & D & & \end{array}$$

and for any other C^* -algebra D

Amalgamated free products over common subalgebras

For C^* -algebras A_1, A_2, C with embeddings $C \hookrightarrow A_i$, the **amalgamated free product** is a C^* -algebra $A_1 *_C A_2$ together with $*$ -homomorphisms $\iota_i : A_i \rightarrow A_1 *_C A_2$ such that

the following diagram
commutes,

$$\begin{array}{ccc} C & \xhookrightarrow{\quad} & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

and commutative diagram

$$\begin{array}{ccccc} C & \xhookrightarrow{\quad} & A_1 & \xrightarrow{\quad} & D \\ \downarrow & & \downarrow \iota_1 & & \downarrow \psi_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2 & \xrightarrow{\quad} & D \\ & & \searrow \psi_2 & \nearrow \psi & \\ & & & & D \end{array}$$

and for any other C^* -algebra D

there exists a unique
 $\psi : A_1 *_C A_2 \rightarrow D$ such that
 $\psi_i = \psi \circ \iota_i$.

Some remarks

- ① We call $A_1 *_C A_2$ the **pushout** of the following diagram.

$$\begin{array}{ccc} C & \xhookrightarrow{\quad} & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

Some remarks

- ① We call $A_1 *_C A_2$ the **pushout** of the following diagram.

$$\begin{array}{ccc} C & \xhookrightarrow{\quad} & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

- ② (Blackadar '78) The maps $\iota_i : A_i \rightarrow A_1 *_C A_2$ are injective.

Some remarks

① We call $A_1 *_C A_2$ the **pushout** of the following diagram.

$$\begin{array}{ccc} C & \xhookrightarrow{\quad} & A_1 \\ \downarrow & & \downarrow \iota_1 \\ A_2 & \xrightarrow{\iota_2} & A_1 *_C A_2, \end{array}$$

② (Blackadar '78) The maps $\iota_i : A_i \rightarrow A_1 *_C A_2$ are injective.

③ If G_1 and G_2 are discrete groups with common subgroup H , then $C^*(G_1 *_H G_2) \simeq C^*(G_1) *_{{C^*(H)}} C^*(G_2)$.

Permanence Properties: Amalgamated free products

Question

When is the amalgamated free product of two RF/ MAP groups over the same subgroup RF/ MAP?

Question

When is the amalgamated free product of two separable RFD C^ -algebras over the same C^* -subalgebra RFD?*

Permanence Properties: Amalgamated free products

Question

When is the amalgamated free product of two RF groups over the same subgroup RF?

Question

When is the amalgamated free product of two separable RFD C^ -algebras over the same C^* -subalgebra RFD?*

Inspirations and warnings from groups

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.

A counterexample for C^* -algebras

The situation is not so easy with C^* -algebras.

A counterexample for C^* -algebras

The situation is not so easy with C^* -algebras.

Example (Brown-Dykema, 2004)

Consider the unital embeddings $\mathbb{C} \oplus \mathbb{C} \rightarrow \mathbb{M}_2$ and $\mathbb{C} \oplus \mathbb{C} \rightarrow \mathbb{M}_3$ given by

$$1 \oplus 0 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad 1 \oplus 0 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

A counterexample for C^* -algebras

The situation is not so easy with C^* -algebras.

Example (Brown-Dykema, 2004)

Consider the unital embeddings $\mathbb{C} \oplus \mathbb{C} \rightarrow \mathbb{M}_2$ and $\mathbb{C} \oplus \mathbb{C} \rightarrow \mathbb{M}_3$ given by

$$1 \oplus 0 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad 1 \oplus 0 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then $\mathbb{M}_2 *_{\mathbb{C} \oplus \mathbb{C}} \mathbb{M}_3$ is not finite, which means it cannot be RFD.

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree.
(Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are RF and H a common finite subgroup, then $G_1 *_H G_2$ is RF.

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree.
(Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree. (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
- When A_1 and A_2 are RFD and C is finite-dimensional, we have necessary and sufficient conditions for when $A_1 *_C A_2$ is RFD. (Li-Shen, '12)

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree. (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
- When A_1 and A_2 are RFD and C is finite-dimensional, we have necessary and sufficient conditions for when $A_1 *_C A_2$ is RFD. (Li-Shen, '12)
e.g. If $A_1 = A_2$, then $A_1 *_C A_2$ is RFD.

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are RF and H a common finite subgroup, then $G_1 *_H G_2$ is RF.

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are RF and H a common finite subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are finitely generated, torsion-free, nonabelian nilpotent groups, then there exists a common subgroup H such that $G_1 *_H G_2$ is not RF. (That means $C^*(G_1 *_H G_2) \simeq C^*(G_1) *_{C^*(H)} C^*(G_2)$ is not RFD.)

Inspirations and warnings from groups

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2 \times \mathbb{Z}) *_{C^*(\mathbb{F}_2)} C^*(\mathbb{F}_2 \times \mathbb{Z})$$

(Baumslag, '63) Assume G_1 and G_2 are discrete groups.

- If G_1 and G_2 are finite and H is a common subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are RF and H a common finite subgroup, then $G_1 *_H G_2$ is RF.
- If G_1 and G_2 are finitely generated, torsion-free, nonabelian nilpotent groups, then there exists a common subgroup H such that $G_1 *_H G_2$ is not RF. (That means $C^*(G_1 *_H G_2) \simeq C^*(G_1) *_{C^*(H)} C^*(G_2)$ is not RFD.)
But if H is central then $G_1 *_H G_2$ is RF.

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree. (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
- When A_1 and A_2 are RFD and C is finite-dimensional, we have necessary and sufficient conditions for when $A_1 *_C A_2$ is RFD. (Li-Shen, '12)
e.g. If $A_1 = A_2$, then $A_1 *_C A_2$ is RFD.

What we can say for C^* -algebras

Let $C \subseteq A_1, A_2$ be unital inclusions of separable C^* -algebras.

- When A_i are both finite-dimensional, $A_1 *_C A_2$ is RFD iff the A_i have faithful tracial states whose restrictions to C agree.
(Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
- When A_1 and A_2 are RFD and C is finite-dimensional, we have necessary and sufficient conditions for when $A_1 *_C A_2$ is RFD.
(Li-Shen, '12)
e.g. If $A_1 = A_2$, then $A_1 *_C A_2$ is RFD.
- If A_i are both commutative, then $A_1 *_C A_2$ is RFD.
(Korchagin, '14)

What we can say for C^* -algebras now

Theorem (C.-Shulman, 2018)

Let A_1 and A_2 be unital separable RFD C^ -algebras and $C \subset A_1, A_2$ a central subalgebra. Then the amalgamated free product $A_1 *_C A_2$ is RFD when A_1 and A_2 are strongly RFD.*

What we can say for C^* -algebras now

Theorem (C.-Shulman, 2018)

Let A_1 and A_2 be unital separable RFD C^ -algebras and $C \subset A_1, A_2$ a central subalgebra. Then the amalgamated free product $A_1 *_C A_2$ is RFD when A_1 and A_2 are strongly RFD.*

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

Remarks on the proof

In spirit, we show that each irreducible representation (ρ, \mathcal{H}) of $A_1 *_C A_2$ is a pointwise $*$ -strong limit of finite-dimensional representations $\sigma_n : A_1 *_C A_2 \rightarrow P_n B(\mathcal{H}) P_n$ where $P_n \in B(\mathcal{H})$ are finite-rank projections such that $P_n \nearrow I_{\mathcal{H}}$.

Remarks on the proof

In spirit, we show that each irreducible representation (ρ, \mathcal{H}) of $A_1 *_C A_2$ is a pointwise $*$ -strong limit of finite-dimensional representations $\sigma_n : A_1 *_C A_2 \rightarrow P_n B(\mathcal{H}) P_n$ where $P_n \in B(\mathcal{H})$ are finite-rank projections such that $P_n \nearrow I_{\mathcal{H}}$.

Remark

If we assume $C = \mathbb{C}$ or $C = 0$, we can drop “strongly” and recover the result of Exel and Loring for separable C^ -algebras.*

Examples of strongly RFD C^* -algebras

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

¹i.e. all irreducible representations are finite-dimensional

²i.e. infinite-dimensional C^* -algebras whose proper quotients are all finite-dimensional

Examples of strongly RFD C^* -algebras

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

The following C^* -algebras are strongly RFD.

- ① commutative C^* -algebras,

¹i.e. all irreducible representations are finite-dimensional

²i.e. infinite-dimensional C^* -algebras whose proper quotients are all finite-dimensional

Examples of strongly RFD C^* -algebras

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

The following C^* -algebras are strongly RFD.

- ① commutative C^* -algebras,
- ② FDI C^* -algebras¹,

¹i.e. all irreducible representations are finite-dimensional

²i.e. infinite-dimensional C^* -algebras whose proper quotients are all finite-dimensional

Examples of strongly RFD C^* -algebras

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

The following C^* -algebras are strongly RFD.

- ① commutative C^* -algebras,
- ② FDI C^* -algebras¹,
- ③ full group C^* -algebras for virtually abelian groups (Thoma, '64), and

¹i.e. all irreducible representations are finite-dimensional

²i.e. infinite-dimensional C^* -algebras whose proper quotients are all finite-dimensional

Examples of strongly RFD C^* -algebras

Definition

A C^* -algebra A is **strongly RFD** if every quotient of A is RFD.

The following C^* -algebras are strongly RFD.

- ① commutative C^* -algebras,
- ② FDI C^* -algebras¹,
- ③ full group C^* -algebras for virtually abelian groups (Thoma, '64), and
- ④ just-infinite² RFD C^* -algebras (Grigorchuk-Musat-Rørdam, '16).

¹i.e. all irreducible representations are finite-dimensional

²i.e. infinite-dimensional C^* -algebras whose proper quotients are all finite-dimensional

More examples!

More examples!

- (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
 $\mathbb{M}_4 *_{\mathbb{M}_2} \mathbb{M}_6$ (define with respect to the usual unital embeddings) is RFD.

More examples!

- (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
 $\mathbb{M}_4 *_{\mathbb{M}_2} \mathbb{M}_6$ (define with respect to the usual unital embeddings) is RFD.
- (Li-Shen, '12)
If G is amenable and MAP and $H < G$ is finite, then $C^*(G) *_{C^*(H)} C^*(G)$ is RFD.

More examples!

- (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
 $\mathbb{M}_4 *_{\mathbb{M}_2} \mathbb{M}_6$ (define with respect to the usual unital embeddings) is RFD.
- (Li-Shen, '12)
If G is amenable and MAP and $H < G$ is finite, then $C^*(G) *_{C^*(H)} C^*(G)$ is RFD.
- (Korchagin, '14)
If G_1 and G_2 are abelian groups and H a common subgroup, then $C^*(G_1) *_{C^*(H)} C^*(G_2)$ is RFD.

More examples!

- (Brown-Dykema, '04, Armstrong-Dykema-Exel-Li, '04)
 $\mathbb{M}_4 *_{\mathbb{M}_2} \mathbb{M}_6$ (define with respect to the usual unital embeddings) is RFD.
- (Li-Shen, '12)
If G is amenable and MAP and $H < G$ is finite, then $C^*(G) *_{C^*(H)} C^*(G)$ is RFD.
- (Korchagin, '14)
If G_1 and G_2 are abelian groups and H a common subgroup, then $C^*(G_1) *_{C^*(H)} C^*(G_2)$ is RFD.
- (C.-Shulman, '18)
If G_1 and G_2 are virtually abelian groups and H is a common central subgroup, then $C^*(G_1) *_{C^*(H)} C^*(G_2)$ is RFD.

Back to MAP groups

Back to MAP groups

Suppose G_1 and G_2 are locally compact MAP groups and H is a common subgroup.

Back to MAP groups

Suppose G_1 and G_2 are locally compact MAP groups and H is a common subgroup.

Theorem (Khan-Morris, 1982)

*If H is compact and central, then $G_1 *_H G_2$ is MAP.*

Back to MAP groups

Suppose G_1 and G_2 are locally compact MAP groups and H is a common subgroup.

Theorem (Khan-Morris, 1982)

*If H is compact and central, then $G_1 *_H G_2$ is MAP.*

Corollary (C.-Shulman, 2018)

If H is central and $C^(G_1)$ and $C^*(G_2)$ are separable and strongly RFD, then $G_1 *_H G_2$ is MAP.*

Computability

Theorem (Fritz-Netzer-Thom, 2014)

For a finitely presented group G , if $C^(G)$ is RFD, then the operator norm in the universal unitary representation of G is computable, i.e. there exists an algorithm that allows us to approximate the value*

$$\sup\{\|\pi(a)\| : \pi \text{ a unitary representation of } G\},$$

to any precision with rational numbers for any $a \in \mathbb{Z}G$.

Computability

Corollary (Li-Shen, C.-Shulman)

Let G_1, G_2 be finitely presented groups and H a common subgroup. Then the operator norm in the universal unitary representation of $G_1 *_H G_2$ is computable if

- ① H is finite, $G_1 = G_2$, and $C^*(G_1)$ is RFD or
- ② H is finitely generated and central and $C^*(G_1)$ and $C^*(G_2)$ are strongly RFD.

Groups with strongly RFD C^* -algebras?

Question

Is there an nice characterization for discrete groups whose full group C^ -algebra is strongly RFD?*

Groups with strongly RFD C^* -algebras?

Question

Is there an nice characterization for discrete groups whose full group C^ -algebra is strongly RFD?*

Some observations:

- Examples include virtually abelian groups (Thoma, '64)

Groups with strongly RFD C^* -algebras?

Question

Is there an nice characterization for discrete groups whose full group C^ -algebra is strongly RFD?*

Some observations:

- Examples include virtually abelian groups (Thoma, '64)
- and groups whose full group C^* -algebras yield just-infinite C^* -algebras (Belyaev-Grigorchuk-Shumyatsky, '17).

Groups with strongly RFD C^* -algebras?

Question

Is there an nice characterization for discrete groups whose full group C^ -algebra is strongly RFD?*

Some observations:

- Examples include virtually abelian groups (Thoma, '64)
- and groups whose full group C^* -algebras yield just-infinite C^* -algebras (Belyaev-Grigorchuk-Shumyatsky, '17).
- By Rosenberg's Theorem, they have to be amenable.

Groups with strongly RFD C^* -algebras?

Question

Is there an nice characterization for discrete groups whose full group C^ -algebra is strongly RFD?*

Some observations:

- Examples include virtually abelian groups (Thoma, '64)
- and groups whose full group C^* -algebras yield just-infinite C^* -algebras (Belyaev-Grigorchuk-Shumyatsky, '17).
- By Rosenberg's Theorem, they have to be amenable.
- All quotients of finitely generated nilpotent groups are RF, but these have strongly RFD full group C^* -algebras only if they are virtually abelian.

Some recommended reading

- S. Armstrong, K. Dykema, R. Exel and H. Li, On embeddings of full amalgamated free product C^* -algebras, *Proc. Amer. Math. Soc.* **132** (2004), 2019-2030.
- G. Baumslag, On the residual finiteness of generalised free products of nilpotent groups, *Trans. Amer. Math. Soc.* **106**(1963), 193-209.
- K. Courtney and T. Shulman, Free products with amalgamation over central C^* -subalgebras, preprint 2018. arxiv:1707.01949.
- R. Exel and T. Loring, Finite-dimensional representations of free product C^* -algebras, *Int. J. Math.*, **03**(1992), Issue 04.
- A. Korchagin, Amalgamated free products of commutative C^* -algebras are residually finite-dimensional, *Journal of Operator Theory*, **71**(Spring 2014), Issue 2, 507-515.
- Q. Li and J. Shen, A note on unital full amalgamated free products of RFD C^* -algebras, *Illinois J. Math.* **56**(2012), No. 2, 647-659.
- E. Thoma, Ein Charakterisierung diskreter Gruppen vom Typ I, *Invent. Math.* **6**(1968), 190 - 196.