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1 Introduction

The following are (extended) notes from a four-week lecture series given in the
Operator Theory Seminar at the University of Virginia in Fall 2016 on several
important properties and results from Eberhard Kirchberg’s 1993 paper [9].
Since his seminal work was published, several authors have expanded and sim-
plified some of his arguments and results, notably Gilles Pisier ([16]), Naurataka
Ozawa ([14]), and Nate Brown and Naurataka Ozawa([2]). We take advantage
of this subsequent material for many of the arguments presented and will often
refer the reader to these texts for proofs omitted here.

As of May 2020, I have made a few updates to these notes based on other
expository talks. Despite my best attempts, typos still lurk everywhere. If you
find some, I’d love to hear about it!

Unfortunately, four lectures is hardly enough time to fully grasp many of the
deep connections among these and other properties and results, so we will direct
our focus toward a “goal” theorem and try to restrict and refine the intermediate
results accordingly.

Theorem 1. The following are equivalent:

1. C∗(F∞)⊗maxC∗(F∞) = C∗(F∞)⊗minC∗(F∞), where F∞ is the free group
on countably many generators. (Kirchberg’s Conjecture)

2. C∗(F∞) has the WEP.

3. All C∗-algebras are QWEP. (QWEP Conjecture)

4. LLP ⇒ WEP.

Time willing, we will mention how these connect to Connes Embedding Conjec-
ture via several “permanence properties” of the WEP and QWEP.

Conjecture 1 (Connes). Every finite von Neumann algebra with separable pre-
dual is embeddable in to an ultrapower Rω of the hyperfinite II1-factor R.

Most of our work, however, will be to establish the following tensorial duality
between the LLP and WEP:
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Theorem 2. Let A and B be C∗-algebras. Then

1. A has the LLP ⇔ A⊗max B(`2) = A⊗min B(`2),

2. B has the WEP ⇔ C∗(F∞)⊗max B = C∗(F∞)⊗min B, and

3. A has the LLP and B has the WEP ⇒ A⊗max B = A⊗min B.

References will be given to the authors of or inspirations for certain argu-
ments as we go. We will also occasionally restrict arguments to a unital case
and provide references (or wave our hands and say that it suffices to prove
the claim for the unitization) for the non-unital case. We will avoid restricting
ourselves to the separable case unless it is the only case. You will notice a
dearth of references to relative weak injectivity (rwi) (also known as weakly cp
complementation1). This is out of respect for time constraints and quantity of
material presented, not disrespect for the subject. In fact, many of the proofs
given for characterizations for the WEP (also known as weak injectivity) come
from parallel characterizations for relative weak injectivity in [2].

2 Preliminaries

2.1 Tensor Product Norms

Much of this section comes from chapter 3 from [2] and so arguments will not
be given that can be found in that text. Deviations will be proved.

Let A, B, and C be C∗-algebras and H a Hilbert space.
We denote an algebraic tensor product (with natural involution) by

A�B =

{
n∑
i=1

ai ⊗ bi : ai ∈ A, bi ∈ B, for 1 ≤ i ≤ n, n ∈ N

}
.

To make this a C∗-algebra, we would like to take its completion with respect
to a C∗-norm ‖ · ‖α (which will actually be cross norms2). We denote the C∗-

algebra A�B‖·‖α = A⊗α B. However, on this algebra, we can define multiple
C∗-norms ‖ · ‖α, which are often distinct. Indeed, we even have a name for C∗-
algebras whose algebraic tensor product with any other algebra has a unique
C∗-norm.

Definition 1. A C∗-algebra A is nuclear if A�B has a unique C∗-norm for
any C∗-algebra B.

Example 1. A finite-dimensional C∗-algebra is an easy and often useful exam-
ple of a nuclear C∗-algebra.

1This is a word.
2‖ · ‖α is a cross norm if ‖a⊗ b‖α ≤ ‖a‖A‖b‖b for any a ∈ A and b ∈ B.
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Though there may exist many distinct C∗-norms on A � B, two will be of
primary interest to us.

Definition 2 (Tensor Product Norms). For x =
∑n
i=1 ai ⊗ bi ∈ A � B (the

algebraic tensor product)

• ‖x‖max = sup{‖π(x)‖ : π : A�B → B(Hπ) is an irrep }

• ‖x‖min = ‖
∑n
i=1 πA(ai)⊗ πB(bi)‖B(HA⊗HB)

where (πA, HA) and (πB , HB) are any faithful reps of A and B, resp.

The completion A ⊗max B = A�B‖·‖max
is often called the projective C∗-

tensor product; the completion A ⊗min B = A�B‖·‖min
is often called the

injective C∗-tensor product.

Theorem 3 (Universal Property of ⊗max). For any C∗-algebra C, any
*-homomorphism A�B → C extends uniquely to a *-homomorphism
A⊗max B → C.
In particular, if πA : A → C and πB : B → C are *-homomorphisms with
commuting ranges, then the map πA × πB extends uniquely to A⊗max B.

Theorem 4 (Restrictions of Tensor Product Maps). If π : A�B → B(H) is a
*-homomorphism, then there exist restrictions

πA : A→ B(H) and πB : B → B(H)

with commuting ranges such that π = πA × πB
(where πA × πB(a⊗ b) = πA(a)πB(b)).
If A and B are unital, we may replace B(H) with any unital C∗-algebra C.

Thanks to the universality of ‖ · ‖max and a theorem due to Takesaki (see
[17] or [2]), we know these are truly norms and that for any x ∈ A�B and any
C∗-norm ‖ · ‖α on A�B,

‖x‖min ≤ ‖x‖α ≤ ‖x‖max.

More formally, we have natural surjective *-homomorphisms

A⊗max B → A⊗ αB → A⊗min B.

Consequently, to prove that A � B has a unique C∗-norm, it suffices to show
that

A⊗min B = A⊗max B.

We now give two important examples, which are both deep theorems in
themselves.

Example 2 (Kirchberg, [9]). Let F be any free group with full group C∗-algebra
C∗(F) and H any Hilbert space. Then

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).
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Example 3 (Junge, Pisier, [7]). If H is an infinite dimensional Hilbert space,
then B(H)⊗max B(H) 6= B(H)⊗min B(H)

To gain a greater appreciation for having a unique tensor norm on A � B,
consider the following intuitive property for ⊗min that can fail for ⊗max:

Proposition 1. If A ⊆ B as C∗-algebras and C is another C∗-algebra, then

A⊗min C ⊆ B ⊗min C.

Indeed, this means exactly that the norm on A � C inherited as a subset
of B ⊗min C is the same as then ‖ · ‖min norm on A � C, which follows from
the fact that ‖ · ‖min is independent of faithful representation (and a faithful
representation of A can be obtained by restricting a faithful representation of
B).

However, this can fail for ⊗max. It is perhaps more informative here to un-
derstand why there can be counterexamples than to see actual counterexamples.
To that end, notice that we automatically have the containment A�C ⊆ B�C.
Hence, a representation on the larger algebra restricts to a representation on
the smaller algebra, but there may be representations on A � C that do not
extend to B � C. This means that, for x ∈ A� C,

‖x‖A⊗maxC ≥ ‖x‖B⊗maxC .

As would be expected, it turns out to be quite significant when this property
does hold for ⊗max for C∗-algebras A ⊆ B, and C;3 it also turns out to be quite
significant for this property to hold for a given C∗-algebra A no matter our
choice of B ⊇ A and C, so much so that it gets a name.

Definition 3. A C∗-algebra A has the Weak Expectation Property (WEP)
if for any C∗-algebra B containing A and any C∗-algebra C,

A⊗max C ⊆ B ⊗max C.

If this definition does not meet your expectations, just wait. Nonetheless, now
we can see that nuclearity is at least as strong as the WEP.

Proposition 2. If A is nuclear, then A has the WEP.

Proof. Suppose A is nuclear and B and C are C∗-algebras with A ⊆ B. Then

A⊗max C = A⊗min C ⊆ B ⊗min C.

That is, for all x ∈ A� C,

‖x‖B⊗maxC ≤ ‖x‖A⊗maxC = ‖x‖B⊗minC ≤ ‖x‖B⊗maxC .

3This is that relative weak injectivity we said would be underrepresented.
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Before we depart, however, another couple of extremely useful and rather
straightforward facts for ⊗max and ⊗min must be stated. It is just as unnatural
for them to be inserted here as any where else in the narrative, and having them
here will prevent clutter when we wish to use them (repeatedly) later.

Theorem 5 (Continuity of Tensor Product Maps). 4

If φ : A → C and ψ : B → D are cp5 maps, then φ � ψ : A � B → C �D
extends to

• a cp map φ⊗max ψ : A⊗max B → C ⊗max D and

• a cp map φ⊗min ψ : A⊗min B → C ⊗min D.

Proposition 3. For any C∗-algebras A and B,

A⊗max B ' B ⊗max A

A⊗min B ' B ⊗min A

2.2 Conditional Expectations

Before we are ready to define a weak conditional expectation, it would help to
recall the definition of a conditional expectation.

Definition 4. Given C∗-algebras A ⊆ B, a conditional expectation from B
to A is a cpc linear projection φ : B → A (i.e. φ|A = idA) such that φ is an
A-bimodule map (i.e. φ(aba′) = aφ(b)a′ for any a, a′ ∈ A and b ∈ B).6

It will be more helpful to recall Tomiyama’s characterization of conditional
expectations.

Theorem 6 (Conditional Expectation–Tomiyama). Given C∗-algebras A ⊆ B
and a linear projection φ : B → A the following are equivalent

1. φ is a contitional expectation

2. φ is contractive and completely positive (cpc)

3. φ is contractive

An important example comes from injective C∗-algebras.

Definition 5. A (unital) C∗-algebra A is injective (in the category of (unital)
operator systems with (u)cp maps) if for every C∗-algebra C and operator system
S ⊆ C, any (u)cp map φ : S → A can be extended to a (u)cp map φ̃ : C → A.

4This result is sometimes referred to as the functoriality of ⊗max and ⊗min.
5Complete positivity is crucial, lest you end up with an unbounded map.
6Yes, this is the non-commutative version of a conditional expectation, and yes, it is inspired

by free probability.
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In particular, if A and B are C∗-algebras with A injective, then we have a
conditional expectation from B onto A:

B

A A

cp

id

⊆

The following will be used relentlessly and will be referred to as either “Arve-
son’s Theorem” or “the injectivity of B(H)”:

Theorem 7 (Arveson’s Extension Theorem). For any Hilbert space H, B(H)
is injective in the category of (unital) operator systems with (u)cp maps.

We can use Arveson’s Extension Theorem to show that for any C∗-algebras
A ⊆ B where A is faithfully embedded in B(H) for some Hilbert space H,
the injectivity of A is equivalent to the existence of a conditional expectation
from B(H) onto A. (Indeed, if A is injective, then the identity on A extends
to a conditional expectation. On the other hand, if there is such a conditional
expectation, then we follow the following diagram.)

C B(H)

B A A

Arveson’s

cp

ucp

⊂

id

⊂

Now, suppose that, given A ⊆ B, there is, not a cp projection from B onto
A but a cp map from B onto the enveloping von Neumann algebra of A (i.e.
weak closure of the image of A under the universal representation (πu, B(Hu)))
that agrees with πu on A. Since B is mapping to the weak closure of the uni-
versal representation of A as opposed to A, we call the map a weak conditional
expectation. For convenience, we identify A∗∗ = πu(A)′′ and often treat A as a
subalgebra of A∗∗ and A∗∗ as a subalgebra of B(Hu).

Definition 6. For C∗-algebras A ⊆ B, a weak conditional expectation is a
cp map φ : B → A∗∗ ' πu(A)′′ such that φ agrees with the natural embedding
of A into A∗∗.

Now, we are ready to give, what we will henceforth take to be, the definition
of the Weak Expectation Property:

Definition 7 (WEP). Let A be a C∗-algebra, and assume A ⊆ A∗∗ ⊆ B(Hu)
where πu : A→ B(Hu) is the universal representation of A given by the Gelfand-
Naimark theorem. A has the Weak Expectation Property (WEP) if there
exists a ccp7 map φ : B(Hu)→ A∗∗ such that φ(a) = a for all a ∈ A.

7In [2], this map is ucp without assumption that A is unital. In [16], it is not ucp. We are
unable to establish the soon to follow equivalent characterizations if the definition requires a
ucp map even when A is non-unital.
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Remark 1. For the reader familiar with approximate injectivity, it is a highly
non-trivial fact that WEP is not the same as approximate injectivity from [6].
Indeed, Kirchberg ([9]) proved that these two are the same iff B(`2)�B(`2) has
a unique tensor norm, the latter statement being disproven by Junge and Pisier
in [7].

Definition 8 (QWEP). A C∗-algebra is QWEP if it is the quotient of a C∗-
algebra with the WEP.

3 WEP

The material in this section will be a veritable Frankenstein’s monster built
of several sources, folklore, and observations. Readily sourced sources will be
cited; folklore will not; deviations from sources will be proved.

The WEP has been characterized dozens of times in various contexts. We will
show restraint and only use the characterizations we need. First, we should wean
ourselves of the universal representation. To do this, we will need Arveson’s
extension theorem and the universal property of the double dual.

Proposition 4. For each non-degenerate representation π : A → B(H) of A,
there exists a unique normal extension π̃ : A∗∗ → B(H) such that π(A∗∗) =
π(A)′′.

Proposition 5. Let A be a C∗-algebra. TFAE:

1. A has the WEP (i.e. there is a weak conditional expectation from B(Hu)
onto A∗∗ that agrees with idA).

2. For any C∗-algebra B such that A embeds into B, there exists a ccp map
ψ : B → A∗∗ such that ψ(a) = a for all a ∈ A.

3. For any C∗-algebra B such that A embeds into B and any ∗-homomorphism
π : A→ B(H) there exists a ccp map ρ : B → π(A)′′ such that ρ(a) = π(a)
for all a ∈ A.

Remark 2. This is an adaptation of Prop 3.6.6 in [2].

Proof. The proof for (1)⇒(2)⇒(3) involves the universal property of A∗∗ and
a couple applications of Arveson’s Extension Theorem. It can be reduced to
the following commutative diagram where π̃ is the normal extension of π, and
πu : A→ B(Hu) is the universal representation, where we assume A∗∗ ' πu(A)′′

is embedded in B(Hu).
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B(H)

π(A)′′

B A A∗∗ B(Hu)

Arveson

⊆

Arveson

⊇

π

πu

π̃u

⊆
WEP

Example 4. By injectivity, B(H) has the WEP for any Hilbert space H. (In
fact, if B(H) ⊆ B, the identity on B(H) will extend to a conditional expectation
B → B(H).) However, if H is infinite dimensional, B(H) is non-nuclear.
Hence, nuclearity is strictly stronger than the having the WEP.

Example 5 ([16]). Moreover, a von Neuamnn algebra M has the WEP iff it is
injective (iff it is hyperfinite [3]).

Proof. Necessity follows just as it did for B(H). To see why M ⊆ B(H) having
the WEP is sufficient for injectivity, assume S is an operator system inside a
C∗-algebra A and φ : S →M . Then, we have the following diagram:

A B(H)

S M M∗∗ M ′′ = M

Arveson’s

WEP

φ

⊂ ⊂

This leads us to another important example:

Example 6. The hyperfinite II1-factor R has the WEP. Moreover, Kirchberg
([9]) showed that the direct product of C∗-algebras with the WEP also has the
WEP; hence,

∏
NR = `∞(R) has the WEP. Therefore, Rω is QWEP for any

(non-trivial) ultrafilter ω of N.

Remark 3. This is why the Weak Expectation Property is sometimes called
“Weak Injectivity”. (Recall also that A∗∗ is injective whenever A is nuclear.
See Theorem 11.6 in [16].)

Recall that a trace τ on A ⊂ B(H) is amenable if there exists a cpc map
φ : B(H)→ πτ (A)′′ such that φ(a) = πτ (a) for all a ∈ A.

Corollary 1. If a unital C∗-algebra A has WEP, then any trace on A is
amenable.

Now, let us see from whence that tensor product characterization (due to
Lance, [12]) came:
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Theorem 8. Let A be a C∗-algebra. Then TFAE:

1. A has the WEP.

2. For any C∗-algebra B with A ⊆ B and any C∗-algebra C,

A⊗max C ⊆ B ⊗max C

3. For any embedding A ⊆ B(H)

A⊗max C∗(F∞) ⊆ B(H)⊗max C∗(F∞)

4. For any embedding A ⊆ B(H) and any free group F

A⊗max C∗(F) ⊆ B(H)⊗max C∗(F)

Before we begin the proof, we give a few results that will serve as Lemmas.
For the (3)⇒(4) portion, we will use Proposition 8.8 from [16].

Lemma 1 (Prop 8.8). [16] For groups Γ ⊆ G, there exists a canonical embedding
C∗(Γ) ↪→ C∗(G) and a conditional expectation from C∗(G) onto the image of
C∗(Γ) under this embedding.

It will be prudent to go ahead and flesh out the relevant corollary (which
was given in [16] but not explicitly as a corollary).

Corollary 2. Let F be an arbitrary free group, then for any finite dimensional
subspace D ⊆ C∗(F), there is a C∗-subalgebra C of C∗(F) containing D, which
is *-isomorphic to C∗(F∞), and a conditional expectation C∗(F)→ C. In other
words, idC∗(F∞) factors through C∗(F) via ucp maps.

Indeed, any element in C∗(F) can be expressed with countably many elements
{gi}∞i=1 in F. Then we simply find a copy of F∞ in F containing {gi}∞i=1. This
will induce an embedding C∗(F∞) ↪→ C∗(F), and the rest follows from Lemma
1.

For the (4)⇒(1) portion, we will invoke The Trick from [2], so we shall
give its proof first. The Trick is originally proved for any C∗-norm on a tensor
product that satisfies a couple of properties that are satisfied by ‖ · ‖max. Since
we will only need it for this norm, we will state the proposition in terms of this
norm.

Lemma 2 (The Trick). [2] Let A ⊆ B and C be C∗-algebras such that

A⊗max C ⊆ B ⊗max C.

Given representations πA : A → B(H) and πC : C → B(H) with commuting
ranges, there exists a ccp map φ : B → πC(C)′ which extends πA.

We give the proof of The Trick in the unital case. The non-unital case follows
from the unital case after some observations on induced inclusions in the tensor
product setting. See [2] for the rest of the proof.
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Proof. [2] Assume that A,B, and C are unital with 1A = 1B . By universality,
πA×πC : A�C → B(H) extends to a *-homomorphism πA×πC : A⊗maxC →
B(H). Since

A⊗max C ⊆ B ⊗max C,

πA × πC extends to a ucp map Φ : B ⊗max C → B(H) by injectivity of B(H).
Let φ : B → B(H) be given by φ(b) = Φ(b⊗ 1C).

To see that φ(B) ⊆ πC(C)′, notice that ΦC1B⊗C = πC is a *-homomorphism,
and so C1B⊗C8 is in the multiplicative domain9 of Φ. Furthermore, B⊗C1C ⊆
(C1B ⊗ C). So, for b ∈ B and c ∈ C,

φ(b)π(c) = Φ(b⊗ 1C)Φ(1B ⊗ C)

= Φ((b⊗ 1C)(1B ⊗ C))

= Φ((1B ⊗ c)(b⊗ 1C))

= π(c)φ(b).

Now, we are ready to give the proof of the theorem.

Proof of Theorem 8. For (1)⇒(2), we follow the proof for Prop 3.6.2 in [2]:

(1)⇒(2) Suppose A,B, and C are C∗-algebras where A has the WEP and A ⊆
B. First note that, by the universal property of ⊗max, the embedding
A�B ↪→ B ⊗max C extends to a *-homomorphism

ρ : A⊗max B → B ⊗max C.

We have only to show that this map is injective. To do so, we will take a
faithful representation π : A⊗maxC → B(H) and show that ρ is a factor of
π. Let πA : A→ B(H) and πC : C → B(H) be the restrictions of π with
commuting ranges. In particular, πC(C) and πA(A)′′ are two commuting
subspaces of B(H) and hence their natural inclusion maps ιπC(C) and
ιπA(A)′′ are two *-homomorphisms with commuting ranges. Again, the
universal property of ⊗max allows us to extend ιπC(C) × ιπA(A)′′ to a *-
homomorphism

πA(A)′′ ⊗max πC(C)→ B(H).

Since A has the WEP and A ⊆ B, there is a ccp extension φ : B → πA(A)′′

of πA. Then, by functoriality of ⊗max, φ� πC extends to a ccp map

φ⊗ πC : B ⊗max C → πA(A)′′ ⊗max πC(C).

Then, π = (ιπC(C) × ιπA(A)′′) ◦ (φ⊗ π) ◦ ρ, and thus ρ is injective.

8Recall that finite dimensional C∗-algebras are nuclear, so there is only one tensor product
norm

9The multiplicative domain of Φ is {x ∈ B ⊗max C : Φ(xy) = Φ(x)Φ(y) & Φ(yx) =
Φ(y)Φ(x) ∀ y ∈ B ⊗max C}, or the largest subspace X such that Φ|X is a ∗-homomorphism.
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(3)⇒(4) Let F be any free group, A ⊆ B(H) an embedding, and t =
∑n
i=1 ai⊗xi ∈

A � C∗(F). Then, by Lemma (2), there is a copy of C∗(F∞) in C∗(F)
containing {x1, ..., xn} (which we will identify with C∗(F∞) for simplicity
of notation), and there is a conditional expectation from C∗(F) onto this
copy of C∗(F∞). Notice that our proof of (1)⇒(2) shows that, for any
C∗-algebra C,

C ⊗max C
∗(F∞) ⊆ C ⊗max C

∗(F).

Interpreting this in terms of norms, we have

‖t‖A⊗maxC∗(F) = ‖t‖A⊗maxC∗(F∞) = ‖t‖B(H)⊗maxC∗(F∞) = ‖t‖B(H)⊗maxC∗(F).

(4)⇒(1) Embed πu(A) ⊆ A∗∗ ⊆ B(Hu) where (πu, B(Hu)) is the universal rep-
resentation for A. Let F be a free group on |U(πu(A)′)| generators, and
let π : C∗(F) → πu(A)′ ⊆ B(Hu) be the surjective *-homomorphism in-
duced by mapping generators of F to the unitaries of πu(A)′. Now, we use
The Trick with C = C∗(F), B = B(Hu), B(H) = B(Hu), πA = πu, and
πC = π. Then, we get a ccp map φ : B(Hu)→ πu(A)′′ = A∗∗.

Remark 4. Pisier’s Proposition 8.8 (or, more specifically Lemma 2) is often
what is cited in the text when authors have a preferred free group for a par-
ticular problem. For instance, knowing that the identity for C∗(F∞) factors
through C∗(F2) via ucp maps allows one to restate Kirchberg’s conjecture and
the equivalent conjectures with C∗(F2) instead of C∗(F∞).

We are now well poised to establish the WEP portion of the tensorial duality
between the WEP and LLP, i.e.

Theorem 9. For any C∗-algebra A,

A has the WEP ⇔ C∗(F∞)⊗max A = C∗(F∞)⊗min A.

Before we give the proof, we recall our earlier example 2 where we gave Kirch-
berg’s deep and crucial result:

Theorem 10 (Kirchberg). For any free group F and any Hilbert space H,

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).

We leave the proof for the appendix.

Proof of Theorem 9. Let A ⊆ B(H) be a faithful embedding. Then, by Kirch-
berg’s Theorem and the fact that A⊗minC

∗(F∞) ⊆ B(H)⊗minC
∗(F∞), we can

see the equivalence of the two statements with the following diagram:
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B(H)⊗max C
∗(F∞) = B(H)⊗min C

∗(F∞)

A⊗max C
∗(F∞)

(⇐)
= A⊗min C

∗(F∞)

⊂ (⇒) ⊂

4 LLP

Definition 9. Let A and B be C∗-algebras and J a closed two-sided ideal in B
with quotient map π : B → B/J . A ccp map φ : A → B/J is liftable if there
is a ccp map ψ : A→ B such that π ◦ ψ = φ. If A is unital, we say a ccp map
φ : A → B/J is locally liftable if for any finite dimensional operator system
S ⊆ A there is a ccp map ψ : S → B such that π ◦ ψ = φ|S.

Definition 10 (LLP). A unital C∗ algebra A has the (local) lifting property
(L)LP if any ucp10 map from A into a quotient C∗-algebra is (locally) liftable.
(A non-unital C∗-algebra has (L)LP iff its unitization does.)

Remark 5. Drawing a diagram should justify that the LLP is preserved by
∗-isomorphisms. We will frequently replace a C∗-algebra with an isomorphic
C∗-algebra for the sake of simplicity.

Example 7. The Choi-Effros lifting theorem tells us that all nuclear C∗-algebras
have the LLP (LP when they are separable).

One can think of the LP property as “ucp projectivity” (much in the same
way as “injectivity” for C∗-algebras is actually ucp injectivity). In that light, the
(separable case of) the following theorem, should be thought of as Kirchberg’s
projective analogue to Arveson’s Hahn-Banach Extension Theorem.

Theorem 11. [10] For any free group F, C∗(F) has the LLP. If F is countably
generated, then C∗(F) has the LP.

A sketch of the proof can be found in [14] or [2, 13.1.3]. The proof is
slick, but relies on heavy machinery: The non-commutative Tietze Extension
Theorem and Kasparov’s Steinspring Dilation Theorem.

Proposition 6. Let A be a C∗-algebra and F a free group such that A can
be identified with a quotient C∗(F)/J of C∗(F). Then A has the LLP iff the
identity on C∗(F)/J is locally liftable.

Proof. For simplicity, identify A = C∗(F)/J , and let π : C∗(F) → C∗(F)/J
be the quotient map. Let E ⊆ A be a finite dimensional operator system and

10Yes, we did mysteriously shift from ccp maps to ucp maps, but it turns out to be sufficient
to restrict ourselves to ucp maps. See [2] 13.1.2 for an argument.
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ρ : E → C∗(F) the lift of idA|E guaranteed by assumption. Let B a C∗-
algebra with closed two-sided ideal I, and ϕ : A → B/I a ucp map. Then,
ϕ ◦ π : C∗(F) → B/I is a ucp map and ρ(E) ⊆ C∗(F) is a finite dimensional

operator system. Then, since C∗(F) has the LLP, there is a lift (̃ϕ ◦ π)|ρ(E) of
(ϕ ◦ π)|ρ(E) to B.

B

ρ(E) C∗(F)

E A B/I

(̃ϕ◦π)|ρ(E)

⊆
π

ϕ◦π
ρ

⊆ ϕ

Remark 6. In fact, Kirchberg showed that for F countable, C∗(F) has the Lift-
ing Property (i.e. any ucp map C∗(F)→ B/J lifts to a ucp map C∗(F)→ B).
So, we can argue similarly that any separable C∗-algebra A has the (Local) Lift-
ing Property iff its identification with a quotient of C∗(F∞) is (locally) liftable.

The upshot of this corollary is that, to show that any ucp map lifts, we need
only show that one ucp map (in fact *-homomorphism) lifts. With this, we can
give a class of examples.

Definition 11. [13] A C∗-algebra A is projective (with respect to *-homomorphisms)
if given any C∗-algebra B with two-sided ideal J , any *-homomorphism ψ : A→
B/J lifts to a *-homorphism ψ̃ : A→ B.

Example 8. Projective C∗-algebras have the LLP. (Separable projective C∗-
algebras have the LP.)

The proof uses the corollary from above and the observation that the identity
is a *-homomorphism.

Remark 7. Recall that the WEP can be characterized as a weak injectivity
property, and, furthermore, any injective C∗-algebra has the WEP. We now see
that the LLP is a weakening of projectivity (for *-homomorphisms– it’s clearly a
weaking of projectivity for ucp maps). If you are curious whether WEP implies
LLP or LLP implies WEP, you are asking the right questions.

Outside the nuclear setting and easy corollaries to the above, examples and
non-examples of the LLP are hard to come by. In [15], Ozawa proved the
existence of groups whose full C∗-algebra does not have the LLP, but no concrete
examples were known until Andreas Thom’s 2008 example ([18]) of hyperlinear
groups that are not residually finite.
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Remark 8. Because Thom does not spell out the argument for why these group
C∗-algebras lack the LLP in [18], we sketch it here and outsource relevant def-
initions. For a group G, let τλ denote the trace on C∗(G) coming from its left
regular representation. We say a group G is hyperlinear if τλ is hyperlinear,
meaning there exists a ∗-homomorphism ρ : C∗(G) → Rω such that τλ = τωρ.
We say G has Kirchberg’s factorization property (F) if τλ is amenable (see [2,
Theorem 6.4.3]), meaning there exists a ∗-homomorphism ρ : C∗(G)→ Rω such
that τλ = τωρ and such that ρ has a ucp lift to `∞(R). The full C∗-algebra of
a hyperlinear group without (F) would fail to have the LLP. (Indeed, since Rω
is QWEP, if C∗(G) had the LLP, then by [14, Corollary 3.12], any ucp map
into Rω would have a ucp lift– not just local lift.) Kirchberg showed in [11] that
in the presence of Kazhdan’s Property (T), the factorization property (F) and
residual finiteness (RF) are the same. Hence Thom’s example is hyperlinear
without property (F).

However, we can at least offer the argument from [1] for why this property
should be rare. Indeed, on one hand, every finite dimensional subspace of a
C∗-algebra with the LLP can be identified with a subspace of C∗(F∞), and,
since C∗(F∞) is separable, the set of n-dimensional operator spaces contained
in some C∗-algebra with the LLP is separable. On the other hand, the set of
n-dimensional operator spaces is not separable. So, “most” finite dimensional
operator spaces will generate a C∗-algebra without the LLP.

Notice that the tensorial characterization of the WEP says that a C∗-algebra
A has WEP iff it has a unique tensor norm with the ucp projective C∗-algebra
C∗(F∞). We will likewise get a tensorial characterization of the LLP via a
unique tensor norm with the ucp projective C∗-algebra B(`2). The two key com-
ponents are Kirchberg’s Theorem (from Example 2) and the Effros-Haagerup
lifting theorem:

Theorem 12 (Effros-Haagerup). Let B be a C∗-algebra and J /B. The follow-
ing are equivalent

1. For any C∗-algebra C, the sequence

0→ C ⊗min J → C ⊗min B → C ⊗min B/J → 0

is exact.

2. The sequence

0→ B(H)⊗min J → B(H)⊗min B → B(H)⊗min B/J → 0

is exact for some infinite dimensional Hilbert space H.

3. idB/J is locally liftable.

We do not offer the proof of the Effros-Haagerup lifting theorem here but do
mention that what makesB(`2) “special” is the fact that every finite dimensional
operator system will embed into B(`2).

14



Recall by Theorem 5 that φ� id extends to a ucp map

φ⊗ id : A⊗min B(`2)→ (B/J)⊗min B(`2).

However, we do not know that

(B ⊗min B(`2))/(J ⊗min B(`2)) = (B/J)⊗min B(`2).

In general, we know the following.

Proposition 7. [2] For C∗-algebras C and B with J a closed two-sided ideal
of B, there is a C∗-norm ‖ · ‖α on C � (B/J) such that

(B/J)⊗α C ' (B ⊗min C)/(J ⊗min C).

If B = C∗(F) and C∗(F)/J = A, then the Effros-Haagerup lifting theorem
tells us the sequence

0→ B(H)⊗min J → B(H)⊗min C∗(F)→ B(H)⊗min A→ 0

is exact iff idA : A → C∗(F)/J locally lifts, by Proposition 6 is equivalent to
saying A has the LLP. Since ⊗max is exact and C∗(F)⊗maxB(H) = C∗(F)⊗min

B(H), we know

B(H)⊗min J B(H)⊗min C∗(F) B(H)⊗minC
∗(F)

B(H)⊗minJ

B(H)⊗max J B(H)⊗max C∗(F) B(H)⊗max A

It follows that A has LLP iff B(H)⊗max A = B(H)⊗min A.
So, we have proved the following.

Theorem 13 (Kirchberg). A C∗-algebra A has the LLP if and only if A�B(`2)
has a unique C∗-norm.

Just as with C∗(F), we can replace `2 with any infinite-dimensional Hilbert
space H:

Theorem 14. Let A be a C∗-algebra. Then, TFAE

1. A has the LLP.

2. A⊗min B(H) = A⊗max B(H) for any Hilbert space H.

3. A⊗min B(`2) = A⊗max B(`2).

Proof. We have already proved (3)⇔(1), so it remains to prove (1)⇒(2). The
proof comes from [16].

Let F be a free group and J a two-sided ideal of C∗(F) such that
A ' C∗(F)/J , and let π : C∗(F) → C∗(F)/J be the quotient map. For the
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sake of simplicity, assume A = C∗(F)/J . Let H be any Hilbert space, and
t =

∑n
i=1 ai ⊗ xi ∈ (C∗(F)/J)�B(H). We will argue that

‖t‖(C∗(F)/J)⊗minB(H) ≥ ‖t‖(C∗(F)/J)⊗maxB(H)

by considering a ucp map that maps t ∈ (C∗(F)/J)⊗minB(H) to t ∈ (C∗(F)/J)⊗max

B(H). Let E ⊆ C∗(F)/J be the operator system generated by {ai}ni=1. Since
C∗(F)/J has the LLP, there is a ucp map φ : E → C∗(F) such that π ◦φ(a) = a
for all a ∈ E.

By the functoriality of ⊗max, we can extend π � idB(H) to a ucp map

π ⊗ idB(H) : C∗(F)⊗max B(H)→ (C∗(F)/J)⊗max B(H).

Although we have so far only developed the theory of tensor products for C∗-
algebras, we can also extend φ� idB(H) to a ucp map

φ⊗ idB(H) : E ⊗min B(H)→ C∗(F)⊗min B(H).

where E ⊗min B(H) ⊆ (C∗(F)/J)⊗min B(H) as an operator system.11

Since C∗(F) ⊗min B(H) = C∗(F) ⊗max B(H), we can compose the two ucp
maps. Furthermore,

(π ⊗ idB(H)) ◦ (φ⊗ idB(H))(t) = t.

Hence,

‖t‖(C∗(F)/J)⊗minB(H) = ‖t‖E⊗minB(H) ≥ ‖t‖(C∗(F)/J)⊗maxB(H).

Example 9. We may now give B(H) (for any infinite dimensional Hilbert
space H) as a non-example of a C∗-algebra with the LLP because, as we saw in
Example 3,

B(H)⊗max B(H) 6= B(H)⊗min B(H).

Recall that B(H) has the WEP, so we now know that the WEP does not imply
the LLP. In fact, we now know all of the following conjectures (plus a few more)
are false:

Theorem 15 ([9]). The following conjectures are equivalent:

1. Ext(A) is a group for every separable unital C∗-algebra A with the WEP.

2. Every finite dimensional operator system is unitally completely isometri-
cally isomorphic to an operators system in C∗(F∞).

3. For every pair A and B of separable unital C∗-algebras with the WEP,

A⊗max B = A⊗min B.

4. The WEP and approximate injectivity are equivalent. (See Remark 1.)
11Some natural concerns here are as follows: How is ⊗min defined for operator systems? Is

it functorial? Why is E ⊗min B(H) ⊆ (C∗(F)/J) ⊗min B(H)? Doess this operator system
⊗min agree with the C∗-algebra ⊗min on C∗-algebras? These questions will be answered in
the subsection of the appendix on tensor products for operator systems. For now, we take for
granted that the structures are compatible as we claim.
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5 Main Theorem

We have almost finished proving the tensorial duality for the LLP and WEP.
Once established, this will take care of most of our goal theorem.

Theorem 16 (Kirchberg,[9]). Let A and B be C∗-algebras. Then

1. A has the LLP ⇔ A⊗max B(`2) = A⊗min B(`2),

2. B has the WEP ⇔ C∗(F∞)⊗max B = C∗(F∞)⊗min B, and

3. A has the LLP and B has the WEP ⇒ A⊗max B = A⊗min B.

Proof. It remains to show (3). To that end, faithfully embed B ⊆ B(H) for
some Hilbert space H. Since B has the WEP, A⊗max B ⊆ A⊗max B(H); since
A has the LLP, A⊗max B(H) = A⊗min B(H). Therefore, we have

A⊗max B ⊆ A⊗max B(H) = A⊗min B(H) ⊇ A⊗min B.

In other words, the topologies (and hence norms) agree.

Remark 9. Notice that both B(`2) and C∗(F∞) are universal among separable
C∗-algebras in that any separable C∗-algebra embeds into one and is a quotient
of the other.

Now, recall our goal theorem:

Theorem 17. The following are equivalent:

1. C∗(F∞)⊗maxC∗(F∞) = C∗(F∞)⊗minC∗(F∞), where F∞ is the free group
on countably many generators. (Kirchberg’s Conjecture)

2. C∗(F∞) has the WEP.

3. All C∗-algebras are QWEP. (QWEP Conjecture)

4. LLP ⇒ WEP.

Proof. First, we will handle the implications that are immediate consequences
of Theorem 16.

(1)⇔(2) This follows immediately from Theorem 16 (2).

(4)⇒(1) This follows from Theorem 16(3) and the fact that C∗(F∞) has the LLP.

(2)⇒(3) Since C∗(F) has the LLP for any free group F, by Theorem 16(3), if
C∗(F∞) has the WEP, then

C∗(F)⊗max C∗(F∞) = C∗(F)⊗min C∗(F∞)

for any free group F. But by Theorem 16(2), this is equivalent to C∗(F)
having the WEP. Since any C∗-algebra can be identified with the quotient
of C∗(F) for some free group F, we have that any C∗-algebra is QWEP.
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(3)⇒(4) (This proof follows [14].) It will suffice to prove that QWEP + LLP ⇒
WEP. To that end, suppose A ⊆ B(HA) has the LLP and is QWEP,
and let B be a C∗-algebra with the WEP and π : B → A a surjective
*-homomorphism. Without loss of generality, we may assume A and B
are unital or replace them with their unitizations. For a finite dimensional
operator system E ⊆ A, let ψE : E → B denote the ucp lifting of idA|E .
Let π̃ : B∗∗ → A∗∗ be the normal extension of π. Then Arveson’s theorem
(for E ⊆ B(HA) and φE : E → B(HB)) along with the WEP give us a
ucp map φE : B(HA)→ A∗∗ such that φE |E = idE .

B(HA)

A∗∗ = π(B)′′

A

E B B∗∗ B(HB)

Arveson

⊆
⊆

⊆

ψE

π

⊆

π̃

⊆
WEP

Let φ : B(HA)→ A∗∗ be any cluster point of the net of ucp maps {φE} in
the pointwise weak∗-topology. Then φ is our weak conditional expectation.

6 Connections to CEP

A little more intermediate theory is required to show that a positive answer to
Kirchberg’s conjecture (1) would imply a positive answer to Connes Embedding
Problem (1), and we refer the reader to section 13.3 (and the prerequisite 6.2)
in [2]. However, if one will accept a few permanence properties of the WEP and
QWEP, we can explain why a positive answer to CEP would imply that the
QWEP conjecture is true.

6.1 Some Permanence Properties of WEP and QWEP

Here we prove or just list some relevant permanence properties of the WEP
and QWEP. For more, see [9]. The most utilized permanence property is the
following:

Proposition 8. Suppose A ⊆ B are C∗-algebras, B is (Q)WEP, and there
exists a weak conditional expectation from B to A∗∗. Then A is (Q)WEP.
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Since the intermediate lemmas that establish this result, we will give them and
argue for what is not explicitly proved in the sources. First, we sketch the proof
of the claim for WEP:

Proof for WEP case. Suppose A ⊆ B, B is WEP, and φ : B → A∗∗ is a weak
conditional expectation. From Banach space theory, we know that the bounded
linear map φ : B → (A∗)∗ uniquely extends to a weak*-continuous map φ̃ :
B∗∗ → A∗∗, which is actually a conditional expectation. We embed A ⊆ A∗∗ ⊆
B(HA) and B ⊆ B∗∗ ⊆ B(HB) (where (πA, B(HA)) and (πB , B(HB)) are the
respective universal representations). Being fast and loose with our “⊂” symbol
gives us the following diagram:

B(HA)

A∗∗

A B B∗∗ B(HB)

Arveson

⊆
⊆

⊆

φ

⊆

φ̃

⊆
WEP

Following the diagram gives our desired weak conditional expectation
B(HA)→ A∗∗.

Since idA∗∗ is a weak conditional expectation for A ⊆ A∗∗, we get the following
corollary:

Corollary 3. If A∗∗ is WEP, then so is A.

Now, to prove the proposition for the case of B QWEP. This argument is
an embellishment of the one given in [2].

Proof. Suppose A ⊆ B, B is QWEP, and φ : B → A∗∗ is a weak conditional
expectation. Again, let φ̃ : B∗∗ → A∗∗ be our extension. Suppose C is a
C∗-algebra with the WEP with *-homomorphism π : C → B. Then we get a
normal extension π : C∗∗ → B∗∗ with

π−1(A)∗∗) ' (kerπ)∗∗ ⊕A∗∗ ⊆ (kerπ)∗∗ ⊕B∗∗ ' C∗∗.

So, we have a ucp map

ψ = id(kerπ)∗∗ ⊕ φ̃ : C∗∗ → π−1(A)∗∗

such that ψ|π−1(A) = idπ−1(A). Then, ψ|C : C → π−1(A)∗∗ is a weak conditional
expectation. Since C is WEP, this implies that π−1(A) is also WEP and A is a
quotient of π−1(A).
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Again, since idA∗∗ is a weak conditional expectation for A ⊆ A∗∗, we have the
following corollary.

Corollary 4. A C∗-algebra A is QWEP if A∗∗ is QWEP.12

We conclude the section with a few properties that we will not prove.

Proposition 9. Let Ai below be C∗-algebras

1. WEP is preserved by complete isomorphisms. (see [16] 15.10)

2. Ai is (Q)WEP for every i ∈ I iff
∏
i∈I

Ai is (Q)WEP.

(see [9] 3.3)

3. Let {Ai}i∈I be an increasing net of C∗-subalgebras in B(H). If Ai is
(Q)WEP for every i ∈ I, then so is

⋃
Ai. (see [2] 13.3.6)

6.2 CEP ⇒ QWEP

Here we briefly sketch the argument (from [2]) for why a positive answer to
Connes Embedding Conjecture (1) would imply a positive answer to the QWEP
conjecture. The argument has two main components:

1. Assume CEP and show that every finite von Neumann algebra with sep-
arable predual is QWEP.

2. Justify why every finite von Neumann algebra with spearable predual
being QWEP implies that every C∗-algebra is QWEP.

Proof. The proofs of the two components go roughly as follows:

1. Note that we have already used the second property in Prop 9 to argue
that an ultrapower of the hyperfinite II1-factor is QWEP. Since every von
Neumann subalgebra of a finite von Neumann algebra13 is the range of a
conditional (and hence weak conditional) expectation, any von Neumann
subalgebra of Rω is QWEP by Prop 8. By assumption, this means that
all finite von Neumann algebras with separable predual are QWEP.

2. A consequence of the third property in Prop 9 is that, if every finite von
Neumann algebra with separable predual is QWEP, then every semifinite
von Neumann Algebra is QWEP. From Takesaki’s work in modular theory,
we know that any von Neumann algebra can be realized as the image of
a conditional expectation from a semifinite von Neumann algebra (see [2]
9.3.5-7); hence if all semifinite von Neumann algebras are QWEP, then
all von Neumann algebras are QWEP. This implies that all double-duals
of C∗-algebras are QWEP, which in turn implies that all C∗-algebras are
QWEP.

12iff, see [9] or [14]
13R is finite.
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7 Appendix

7.1 Kirchberg’s Theorem

This theorem was far too important to our proofs to not offer a proof. However,
time was constrained, so we hope that adding the proof to this document will
atone for its absence in the talks.

Theorem 18 (Kirchberg). For any free group F and any Hilbert space H,

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).

Remark 10. Kirchberg’s original proof is for a free group on countably many
generators. Pisier’s argument allows us to immediately start working with gen-
eral free groups in our proofs.

The following proof is due to Pisier, [16], but we will follow the proof in [2].

Proof. By similar arguments to those above, it will suffice to prove the claim
for consider Fn−1 for some n ≥ 3. We shall prove the claim for H = `2, the
more general case will follow in similar fashion.

Let En be the n-dimensional operator space in C∗(Fn−1) spanned by 1 = U0

and the unitary generators Uk of C∗(Fn−1). This operator space is the universal
operator space generated by n contractions with respect to cc maps14 Since
C∗(Fn−1) is the universal C∗-algebra generated by n − 1 unitaries, by looking
at suitable representations, we see that for any (αk)n−1k=0 ∈ Cn,∥∥∥∥∥

n−1∑
k=0

αkUk

∥∥∥∥∥ =

n−1∑
k=0

|αk|.

Hence, we see that En is canonically isometric to `1n. By duality, we have a one-

to-one correspondence between elements z =
∑n−1
k=0 Uk ⊗ xk ∈ En ⊗min B(`2)15

and maps Tz : `∞n → B(`2) given by

(αk) 7→
∑

αkxk.

Lemma 3. En is canonically completely isometrically isomorphic to the dual
operator space `1n = (`∞n )∗, or, equivalently, ‖z‖min = ‖Tz‖cb for every z ∈
En ⊗B(`2).

Proof. Since (Uk)n−1k=0 ∈ En ⊗ `∞n is contractive and z ∈ En ⊗min B(`2) has the
form (idEn ⊗ Tz)((Uk)), we have that ‖z‖min ≤ ‖Tz‖cb. On the other hand,
let a0, ..., an−1 ∈ B(H) for some Hilbert space H, and let θ : En → B(H) be

14i.e. Given n contractions a0, ..., an ∈ B(H), there exists a cc map θ : En → B(H)
mapping Uk 7→ ak. This follows from the universality of C∗(Fn−1) and unitary dilations of
the ak. For the argument, see the proof of 13.2.2 in [2].

15The min norm for operator spaces is also induced by the embeddings.
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the cc map mapping Uk 7→ ak guaranteed by universality. Then, for (ak)n−1k=0 ∈
B(H)⊗ `∞n and any z =

∑
Uk ⊗ xk ∈ En ⊗min B(`2),

‖(idB(H) ⊗ Tz)((ak)n−1k=0‖min = ‖
n−1∑
k=0

ak ⊗ xk‖min = ‖(θ ⊗ idB(`2)(z)‖min ≤ ‖z‖min.

Since (ak)n−1k=0 ∈ B(H)⊗ `∞n was arbitrary, ‖Tz‖cb ≤ ‖z‖min.

Lemma 4. Let Xi ⊆ B(Hi) (i = 1, 2) be unital operator subspaces and let
φ : X1 → X2 be a unital complete isometry. Suppose that φ(X1) is spanned by
unitary elements in B(H2). Then φ uniquely extends to a ∗− homomorphism
between the C∗-subalgebras C∗(Xi) generated by Xi in B(Hi).

Proof. By Arveson’s Extension Theorem (for unital operator spaces), φ extends
to a ucp map from B(H1) to B(H2), also denoted φ. Since φ|X1 is unital
and isometric and since X2 is spanned by unitaries, X1 is contained in the
multiplicative domain16 of φ, i.e. φ|X1

is a *-homomorphism, and so φ is a
∗-homomorphism on C∗(X1).

By the second lemma, it suffices to show that the formal identity map
En ⊗min B(`2) → C∗(Fn−1) ⊗max B(`2) is cc for every n. To that end, let

z =
∑n−1
k=0 Uk ⊗ xk ∈ En ⊗min B(`2) with ‖z‖min = 1. By the first lemma, the

map Tz : `∞n → B(`2) is cc. By the factorization theorem for cb maps17, there
exists a Hilbert space H, a *-homomorphism π : `∞n → B(H), and isometries
V,W ∈ B(`2, H) such that Tz(f) = V ∗π(f)W for all f ∈ `∞n ; we may assume
H = `2. Let ak := π(δk)V and bk := π(δk)W in B(`2). Then, xk := a∗kbk for

each k, and
∑n−1
k=0 a

∗
kak = 1 =

∑n−1
k=0 B

∗
kbk. Hence,∥∥∥∥∥

n−1∑
k=0

Uk ⊗ xk

∥∥∥∥∥
C∗(Fn−1)⊗maxB(`2)

=

∥∥∥∥∥
n−1∑
k=0

(1⊗ ak)∗(Uk ⊗ bk)

∥∥∥∥∥
max

≤

∥∥∥∥∥
n−1∑
k=0

(1⊗ ak)∗(1⊗ ak)

∥∥∥∥∥
1/2

max

∥∥∥∥∥
n−1∑
k=0

(Uk ⊗ b∗k(Uk ⊗ bk)

∥∥∥∥∥
1/2

max

≤ 1,

16The multiplicative domain of φ is
{x ∈ B(H1) : φ(xy) = φ(x)φ(y) & φ(yx) = φ(y)φ(x) ∀ y ∈ B ⊗max C},
or equivalently {x ∈ B(H1) : φ(xx∗) = φ(x)φ(x∗) & φ(x∗x) = φ(x)∗φ(x)},
or equivalently the largest subalgebra A ⊆ B(H1) such that φ|A is a ∗-homomorphism.

17The factorization theorem for cb maps:

Theorem 19 (Haagerup, Paulsen, Wittstock). Let X ⊆ A be an operator space and φ : X →
B(H) a cc map. Then there exists a Hilbert space K, a *-rep π : A→ B(K), and isometries
V,W : H → K such that

φ(x) = V ∗π(x)W

for every x ∈ X. In particular, φ extends to a cc map on A.
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which implies that the formal identity map En ⊗min B(`2) → C∗(Fn−1) ⊗max
B(`2) is contractive. Since B(`2) 'Mm(B(`2)) for all m ≥ 1, this implies that
the map is actually completely contractive.

7.2 Tensor Products for Operator Systems

For the LLP, it behoves us to consider how to define an operator system struc-
ture on the tensor products operator systems. For a resource, we direct you
to Kavruk, Paulsen, Todorov, and Tomforde’s development these concepts in
[8]. The theory guarantees that they play nicely and intuitively with the same
notions for C∗-algebras. For the sake of simplicity, we give pertinent character-
izations for definitions.

Definition 12. For two operator systems Si with unital completely isometric
embeddings ιi : Si → B(Hi), S1 ⊗ S2 is the operator structure arising from the
embedding ι1 � ι2 : S1 � S2 → B(H1 ⊗H2).

Since the restriction of a faithful ∗-homomorphism on a C∗-algebra A to an
operator system S contained in A is uci, we can conclude that for C∗-algebras Ai
with sub-operator systems Si ⊆ Ai, there is a natural embedding S1 ⊗min S2 ⊆
A1 ⊗min A2. Hence, for x ∈ S1 � S2, we can say ‖x‖S1⊗minS2 = ‖x‖A1⊗minA2 .

Furthermore, if A and B are C∗-algebras, then their operator system tensor
product A⊗minB agrees with their C∗-tensor product A⊗minB. (Hence, in the
proof in the preceding section, we were indeed justified in saying that we could
compose two ucp maps (π ⊗ idB(H)) and (φ⊗ idB(H)).)

Furthermore, the operator system tensor product ⊗min is functorial, i.e.

Proposition 10. [8] Given ucp maps φi : Si → Ti between operator systems,
the map

φ1 � φ2 : S1 � S2 → T1 � T2

extends to a ucp map

φ1 ⊗min φ2 : S1 ⊗min S2 → T1 ⊗min T2

7.3 Residual Finite Dimensionality

Another common item in the list for Theorem 1 is that C∗(F∞×F∞) is residually
finite dimensional or RFD (i.e. it has a separating family of finite-dimensional
representations). In this section, we offer a proof for why this is equivalent to
Kirchberg’s Conjecture, i.e. that

C∗(F∞)⊗max C
∗(F∞) = C∗(F∞)⊗min C

∗(F∞) ⇔ C∗(F∞ × F∞) is RFD.

We first note that C∗(F∞×F∞) ' C∗(F∞)⊗maxC
∗(F∞) (which follows from the

universality of the full group C∗-algebra and that of ⊗max). Furthermore, Choi
proved in [4] that C∗(F∞) is RFD. Hence, equivalence of the two conjectures
follows from the following proposition.
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Proposition 11. If A and B are RFD unital C∗-algebras, then A ⊗ B has a
unique C∗-norm iff A⊗max B is RFD.

Proof. The (⇒) claim follows immediately from the fact that A⊗minB is RFD
when A and B are RFD. (Indeed, if A ⊗min B is RFD, then so are A and B
as subalgebras; on the other hand, if A and B are RFD, with separating fami-
lies of f.d. representations {πα} and {σβ}, then π = ⊕απα and σ = ⊕βσβ are
faithful representations. Hence, {πα⊗σβ}α,β yields a separating family of finite
dimensional representations for A⊗min B.)

For the (⇐) first note that, since both the injective and projective tensor
products are RFD, both norms are well-approximated by finite dimensional
representations. So, to show that the two norms agree, it suffices to show that
for any finite dimensional representation π : A ⊗max B → Mn, we can find a
representation π′ : A⊗min B →Mn so that∥∥∥∥∥

n∑
i=1

π′(ai)⊗ π′(bi)

∥∥∥∥∥ ≥
∥∥∥∥∥
n∑
i=1

π(ai ⊗ bi)

∥∥∥∥∥ .
In fact, given any finite-dimensional representation π : A ⊗max B → Mn, we
claim that π|A�B extends to a representation of σ A ⊗min B into Mn, i.e.
π factors through A ⊗min B via the quotient map and a representation σ of
A⊗min B:

A⊗max B Mn

A⊗min B
q

π

σ

To that end, let π : A⊗max B →Mn be a finite dimensional representation
and define the representations

πA : A→Mn by πA(a) = π(a⊗ 1)

πB : B →Mn by πB(b) = π(1⊗ b).

Then, πA(A) and πB(B) are commuting C∗-algebras. Hence, the natural in-
clusions ιA : πA(A) → Mn and ιB : πB(B) → Mn are representations with
commuting ranges. By the universality of ⊗max there is a unique representa-
tion

(ιA × ιB) : πA(A)⊗max πB(B)→Mn

with πA(a)⊗ πB(b) 7→ πA(a)πB(b) for all a ∈ A and b ∈ B.
On the other hand, let

πA ⊗ πB : A⊗min B → πA(A)⊗min πB(B)
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be the representation induced by πA and πB , i.e. for all a ∈ A and b ∈ B

(πA ⊗ πB)(a⊗ b) = πA(a)⊗ πB(b).

Now, since πA(A) and πB(B) are finite-dimensional C∗-algebras, they are
nuclear, i.e. πA(A)⊗max πB(B) = πA(A)⊗min πB(B). Thus, we may define the
representation

σ := (ιA × ιB) ◦ (πA ⊗ πB) : A⊗min B →Mn

of A⊗min B where for a⊗ b ∈ A�B,

σ(a⊗ b) = (ιA × ιB)(πA(a)⊗ πB(b)) = πA(a)πB(b) = π(a⊗ 1)π(1⊗ b) = π(a⊗ b).

Then, σ is an extension of π|A�B .

What we have shown is that a finite-dimensional representation of A⊗maxB
factors through A⊗min B, i.e. the following diagram commutes

A⊗max B Mn

A⊗min B πA(A)⊗ πB(B)

φ

π

πA⊗πB

ιA×ιB

where φ is the quotient map; or, more simply, this diagram commutes:

A⊗max B Mn

A⊗min B
q

π

σ

where q is the quotient map.
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