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MIP∗ = RE

Early this year, a negative answer to the Connes Embedding
Problem was announced by Ji, Natarajan, Vidick, Wright and Yuen
in their paper MIP∗ = RE .

Question (Connes, 1976)

Does every separably acting type II1-factor embed into some
ultrapower Rω of the hyperfinite II1-factor R?

Actually, the authors use quantum complexity theory to give a
negative answer to Tsirelson’s problem from quantum information
theory.
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Tsirelson’s Problem

The operator algebraic formulation of Tsirelson’s Problem goes as
follows.

For m, k ≥ 2, write Z∗km = ∗kj=1Zm.

Theorem (Fritz, Junge et al, Ozawa)

Tsirelson’s Problem has a positive solution if and only if for each
k ,m ≥ 2 with either k > 2 or m > 2,

C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ).
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The Intermediate Steps

How do we get from Rω embeddings of II1-factors to tensor
products of C∗(Z∗km )?

E. Kirchberg, On nonsemisplit extensions, tensor products and
exactness of group C∗-algebras. Invent. Math. 112 (1993),
449-489.

Many of the results and arguments therein (as well as some of
Kirchberg’s peripheral work) have been clarified and augmented by
various authors in the ensuing years. In this talk, we rely heavily on
expositions and improvements from Pisier, Ozawa, and
Brown-Ozawa.
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Goals

Consider the following conjectures.

1. Connes’ Embedding Problem.

2. Every C∗-algebra is QWEP (Kirchberg’s QWEP Conjecture).

3. C∗(F) has WEP for any (every) non-abelian free group F.

4. C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F) for any (every)
non-abelian free group F.

5. C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ) for each
k,m ≥ 2 with either k > 2 or m > 2.

6. C∗(F2 × F2) is residually finite dimensional (RFD).

The plan is to show

(1)⇒ (2)⇒ (3)⇒ (1), (3)⇔ (4), (3)⇔ (5), (4)⇔ (6).

The story begins with injectivity.
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Injectivity

A unital C∗-algebra A is injective if for any embedding A ⊂ B,
there exists a ucp projection ψ : B → A.

B

A A

ψ⊂

idA

This ucp projection ψ : B → A is called a conditional expectation.

Theorem (Arveson)

Let A ⊂ B be C∗-algebras and H a Hilbert space. Any ucp map
φ : A→ B(H) has a ucp extension ψ : B → B(H).

(Q)WEP
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Weak Injectivity

Suppose instead that for some embedding A ⊂ B, there exists a
ucp map ψ : B → A∗∗, which extends the canonical embedding
A ↪→ A∗∗.

B

A A∗∗

ψ

⊂

Such a map is called a weak conditional expectation. When every
embedding of A yields a weak conditional expectation, we would
say A has the Weak Expectation Property or WEP.

To show that A has the WEP, it suffices to check this on the
embedding πu : A→ B(HA).

(Q)WEP
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Examples

All injective C∗-algebras have WEP, including the hyperfinite
II1-factor

R =
⊗
N

M2.

Proposition (Kirchberg)

WEP is closed under taking direct products.

So, `∞(R) =
∏
N
R has WEP, which means that for any (free)

ultrafilter ω ∈ βN\N,

Rω = `∞(R)/{(xn) : lim
n→ω
‖xn‖2,τn = 0}

is a quotient of a WEP C∗-algebra, i.e. QWEP.

(Q)WEP
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Examples

Proposition (Kirchberg)

If A ⊂ B is the range of a conditional expectation B → A, then
B (Q)WEP ⇒ A (Q)WEP.

Proposition

If (N, τ) is a tracial von Neumann algebra, then any von Neumann
subalgebra M ⊂ N is the range of a conditional expectation
N → M.

(Rω, trω) is a tracial von Neumann algebra, which means every
von Neumann subalgebra of Rω inherits QWEP.
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CEP ⇒ QWEP

Let’s see why a positive answer to Connes’ Embedding problem
would imply that every C∗-algebra is QWEP.

Question (Connes, 1976)

Does every II1-factor with separable predual embed into some
ultrapower Rω of the hyperfinite II1-factor R?

It follows from work of Popa that a positive answer to the above
question implies a positive answer to:

Question
Does every tracial von Neumann algebra with separable predual
embed into some ultrapower Rω of the hyperfinite II1-factor R?

Suppose the answer is yes. Then every finite von Neumann algebra
with separable predual is QWEP.

CEP to QWEP
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CEP ⇒ QWEP

Proposition (Kirchberg)

If {Aλ}λ is an increasing net of QWEP C∗-algebras in B(H), then
(
⋃
λ Aλ)′′ is QWEP.

It follows that CEP implies that every semifinte von Neumann
algebra is QWEP, because any semifinite von Neumann algebra
can be written as (

⋃
λMλ)′′, where each Mλ is a tracial von

Neumann algebra with separable predual.

Corollary (to Takesaki’s Modular Theory)

For any von Neumann algebra M, there is a semifinite von
Neumann algebra N so that M embeds into N as the range of a
conditional expectation.
(In particular, N = M oα R where α is the modular action.)

It follows that CEP ⇒ all von Neumann algebras are QWEP.

CEP to QWEP
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Scorecard

Consider the following:

1. Connes’ Embedding Problem

2. Every C∗-algebra is QWEP.

3. C∗(F) has WEP for any (every) non-abelian free group F.

4. C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F) for any (every)
non-abelian free group F.

5. C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ) for each
k,m ≥ 2 with either k > 2 or m > 2.

6. C∗(F2 × F2) is residually finite dimensional (RFD).

So far we have
(1)⇒ (2)

Next is (2)⇒ (3).
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From QWEP to WEP

For our argument, we reduce to the case where C∗(F) is separable.
The results are the same in the non-separable case, but the proofs
are more involved.

If every C∗-algebra is QWEP, then, in particular, every separable
free group C∗-algebra C∗(F) is QWEP.

It turns out this is enough to imply that all separable free group
C∗-algebras have WEP.

This is because, C∗(F) has the “dual” property to the WEP: the
lifting property.
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From QWEP to WEP

Theorem (Kirchberg)

Let F be a free group on countably many generators. Then for any
C∗-algebras A and B with a surjective ∗-homomorphism
π : B → A, any ucp map φ : C∗(F)→ A lifts to a ucp map
ψ : C∗(F)→ B such that πψ = φ.

B

C∗(F) A

π

φ

ψ
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From QWEP to WEP

B(HC∗(F))

πu(C∗(F))′′

πu(C∗(F))

C∗(F) B B∗∗ B(HB)

⊂
⊂

πu

Suppose there is a C∗-algebra B with the WEP and a surjection
π : B → πu(C∗(F)).
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

⊂
⊂

LP

π

By Kirchberg’s theorem, there exists a ucp map C∗(F)→ B so
that the above diagram commutes.
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

⊂
⊂

LP

π

⊂

Now, we identify B with its image in its universal representation
B(HB).
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

⊂

ucp

Arveson’s theorem allows us to extend the map C∗(F)→ B(HB)
to a ucp map B(HC∗(F))→ B(HB).
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

Arveson

⊂
⊂

LP

π

⊂ ⊂

Inside B(HB), B sits inside its double commutant, which we write
as B∗∗.
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

Arveson

⊂
⊂

LP

π

⊂ ⊂
WEP

Since B has the WEP, there exists a ucp map B(HB)→ B∗∗,
which restricts to the identity on B.
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

Arveson

⊂
⊂

LP

π

⊂

π∗∗

⊂
WEP

Let π∗∗ : B∗∗ → C∗(F)∗∗ be the normal extension of
π : B → C∗(F).
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From QWEP to WEP

B(HC∗(F))

C∗(F)∗∗

C∗(F)

C∗(F) B B∗∗ B(HB)

Arveson

⊂
⊂

LP

π

⊂

π∗∗

⊂
WEP

And thus we have our desired ucp map B(HC∗(F))→ C∗(F)∗∗ that
restricts to the identity on C∗(F).
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∗(F) = C∗(F)⊗min C

∗(F) for any (every)
non-abelian free group F.

5. C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ) for each
k,m ≥ 2 with either k > 2 or m > 2.

6. C∗(F2 × F2) is residually finite dimensional (RFD).

So far we have
(1)⇒ (2)

⇒ (3).

How do we get back to CEP?
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Amenable Traces

Theorem (Connes, Kirchberg)

Let A be a separable unital C∗-algebra. TFAE for a tracial state τ
on A.

1. τ is amenable.

2. There exists an embedding πτ (A)′′ ⊂ Rω such that
πτ : A→ πτ (A)′′ ⊂ Rω has a ucp lift A→ `∞(R) and
trωπτ = τ .

3. Given an embedding A ⊂ B(H), there exists a ucp map
ψ : B(H)→ πτ (A)′′ such that ψ(a) = πτ (a) for all a ∈ A.

B(H)

A πτ (A)′′

ψ

⊂

πτ

C∗(F) WEP to CEP
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Amenable Traces and WEP

Suppose A ⊂ B(H) has WEP and tracial state τ .

B(H)

A πτ (A)′′

⊂

πτ

Any trace on a C∗-algebra that has the WEP is amenable.
Hence, if C∗(F∞) has the WEP, then every trace on C∗(F∞) is
amenable. This will imply CEP.

C∗(F) WEP to CEP
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C∗(F∞) has WEP ⇒ CEP

Proof Outline:

Suppose M is a II1-factor with separable predual M∗ and faithful
tracial state τ . Since M∗ is separable, M contains a countable
family of unitaries whose span is dense in the wk∗-topology on M.
That means there exists a ∗-homomorphism ψ : C∗(F∞)→ M
whose image is wk∗-dense in M. Then τψ is a tracial state on
C∗(F∞), and we can identify M ' πτψ(C∗(F∞))′′.

If C∗(F∞) has the WEP, then τψ is amenable, which gives us the
embedding

M 'πτψ(C∗(F))′′ ⊂ Rω.
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Scorecard

Consider the following:

1. Connes’ Embedding Problem

2. Every C∗-algebra is QWEP.

3. C∗(F) has WEP for any (every) non-abelian free group F.

4. C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F) for any (every)
non-abelian free group F.

5. C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ) for each
k,m ≥ 2 with either k > 2 or m > 2.

6. C∗(F2 × F2) is residually finite dimensional (RFD).

So far we have
(1)⇒ (2)⇒ (3)

⇒ (1)

Now, let’s talk tensors.
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C∗-Tensor Products

Given two unital C∗-algebras A and B, the maximal norm on their
algebraic tensor product is given by

‖x‖max = sup{‖π(x)‖ : π : A� B → B(H) a ∗-representation}

for each x ∈ A� B.

We write

A⊗max B = A� B
‖·‖max

.

Any ∗-homomorphism A� B → C into a C∗-algebra C extends to
a unique ∗-homomorphism A⊗max B → C . In particular, any pair
of ∗-homomorphisms A→ C and B → C with commuting ranges
induces a unique ∗-homorphism A⊗max B → C .
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C∗-Tensor Products

Given two faithful representations π1 : A→ B(H1) and
π2 : B → B(H2), we define the spatial norm on A� B by

‖
∑

ai ⊗ bi‖ = ‖
∑

π1(ai )⊗ π2(bi )‖B(H1⊗H2).

Thanks to Takesaki, we know this is the smallest possible C∗-norm
on A� B, and hence we denote the closure by A⊗min B.

The universal property of A⊗max B guarantees a natural surjective
∗-homomorphism A⊗max B → A⊗min B. When the map is
injective, we write

A⊗max B = A⊗min B.
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Examples of a Unique C∗-tensor norm

Theorem (Choi-Effros, Kirchberg)

A C∗-algebra A is nuclear iff there is a unique C∗-norm on A� B
for any C∗-algebra B.

Theorem (Kirchberg)

For any free group F and any Hilbert space H,

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).
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Tensor Product Inclusions

If A ⊂ B and C are C∗-algebras, then there is a natural inclusion

C ⊗min A ⊂ C ⊗min B.

However, in general, we cannot expect to have

C ⊗max A ⊂ C ⊗max B,

i.e. there may be x ∈ C � A for which

‖x‖C⊗maxA > ‖x‖C⊗maxB .
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Tensor Product Characterization of WEP

Theorem (Lance)

The following are equivalent for a unital C∗-algebra A,

1. For any C∗-algebras B and C with A ⊂ B, there is a natural
inclusion

C ⊗max A ⊂ C ⊗max B.

2. For some (any) non-abelian free group F and any C∗-algebra
B with A ⊂ B, there is a natural inclusion

C∗(F)⊗max A ⊂ C∗(F)⊗max B.

3. A has the WEP.

Tensors and Commutants
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Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group F and any Hilbert space H,

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).

Corollary

For any C∗-algebra A and any nonabelian free group F, A has the
WEP iff C∗(F)⊗max A = C∗(F)⊗min A.

(⇒) Embed A ⊂ B(H). Then

C∗(F)⊗max A C∗(F)⊗max B(H)

C∗(F)⊗min A C∗(F)⊗min B(H)

⊂

⊂
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For any C∗-algebra A and any nonabelian free group F, A has the
WEP iff C∗(F)⊗max A = C∗(F)⊗min A.

Corollary

For any free group F, C∗(F) has the WEP iff

C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F).

Remark
If any non-abelian free group C∗-algebra has WEP, then all have
WEP.
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Scorecard

Consider the following:

1. Connes’ Embedding Problem

2. Every C∗-algebra is QWEP.

3. C∗(F) has WEP for any (every) non-abelian free group F.

4. C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F) for any (every)
non-abelian free group F.

5. C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ) for each
k,m ≥ 2 with either k > 2 or m > 2.

6. C∗(F2 × F2) is residually finite dimensional (RFD).

So far we have

(1)⇒ (2)⇒ (3)⇒ (1)

and (3)⇔ (4)

So, how do the Z∗km ’s come into the picture?
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Now with Z∗km !

The free group C∗-algebras belong to a larger class of C∗-algebras
that “characterize the WEP.” We say B characterizes the WEP if
for any C∗-algebra A, A has the WEP iff

A⊗max B = A⊗min B.

Notice that if any C∗-algebra that characterizes the WEP has the
WEP, then every C∗-algebra that characterizes the WEP has the
WEP.

Using results of Kirchberg, Boca, and Pisier, one can readily show
that C∗(Z∗km ) characterizes the WEP when either m > 2 or k > 2.

Toward Tsirelson
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Now with Z∗km !

That means, C∗(F) has WEP iff C∗(Z∗km ) has WEP iff

C∗(Z∗km )⊗max C
∗(Z∗km ) = C∗(Z∗km )⊗min C

∗(Z∗km ).

[Scholz, Werner] “The problem of Tsirelson is now to de-
cide the question whether all quantum correlation func-
tions between two independent observers derived from
commuting observables can also be expressed using observ-
ables defined on a Hilbert space of tensor product form.”

Toward Tsirelson
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Finite Dimensional Approximations

A C∗-algebra is residually finite dimensional (RFD) if it has a
separating family of finite dimensional representations

, i.e. it
embeds into a direct product of matrix algebras:

A ↪→
∏
α

Mnα .

Example

1. C∗(Fn) is RFD for 2 ≤ n ≤ ∞. (Choi ’80)

2. C∗(Z∗km ) is RFD for each m, k ≥ 2. (Exel-Loring ’92)

Proposition

If A and B are RFD C∗-algebras, then A⊗min B is RFD, and
A⊗max B is RFD iff A⊗max B = A⊗min B.

Commutivity in Finite Dimensions
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Finite Dimensional Approximations

So the QWEP conjecture is equivalent to asking whether or not

C∗(F2 × F2) ' C∗(F2)⊗max C
∗(F2)

or
C∗(Z∗km )⊗max C

∗(Z∗km )

can be approximated by their finite dimensional representations.

Theorem (Scholz, Werner)

[Tsirelson’s] problem is equivalent to the question whether all
quantum correlation functions can be approximated by correlation
function derived from finite-dimensional systems.

Commutivity in Finite Dimensions
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Thanks!
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The Lifting Property (again)

Recall that a crucial component of our proof that QWEP ⇒ C∗(F)
WEP was that free group C∗-algebras have a so-called lifting
property.

Let A,B, and C be unital C∗-algebras and π : B � C a surjective
∗-homomorphism. A ucp map φ : A→ C is liftable if there exists a
ucp map ψ : A→ B such that πψ = φ.

B

A C

π
ψ

φ
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The Lifting Property

A ucp map φ : A→ C is locally liftable if for any finite dimensional
operator system S ⊂ A, the restriction φ|S has a ucp lift
ψ : S → B.

B

S A C

π
ψ

⊂ φ

A unital C∗-algebra has the (local) lifting property (L)LP if any
ucp map from A into any C∗-quotient is (locally) liftable.
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Examples

Corollary (Choi-Effros)

All nuclear C∗-algebras have the (L)LP.

Theorem (Kirchberg)

Let F be any free group. Then C∗(F) has the LLP, and it has the
LP when F is countable.

Corollary

Let A be a unital C∗-algebra and F a free group such that C∗(F)
surjects onto A. Then A has the LLP iff idA is locally liftable.

C∗(F) B

A A C
φ
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Back to Tensors

Suppose A,B,C are C∗-algebras and A = B/J for some J / B.

Then
0→ C ⊗max J → C ⊗max B → C ⊗max A→ 0

is guaranteed to be exact, but the sequence

0→ C ⊗min J → C ⊗min B → C ⊗min A→ 0

may fail to be.
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Effros-Haagerup

Theorem (Effros-Haagerup)

Let B be a C∗-algebra and J / B. The following are equivalent

1. For any C∗-algebra C, the sequence

0→ C ⊗min J → C ⊗min B → C ⊗min B/J → 0

is exact.

2. The sequence

0→ B(H)⊗min J → B(H)⊗min B → B(H)⊗min B/J → 0

is exact for some infinite dimensional Hilbert space H.

3. idB/J is locally liftable.

Consider B = C∗(F) and C∗(F)/J = A.
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Tensorial Characterization of the LLP

If B = C∗(F) and C∗(F)/J = A, then the sequence

0→ B(H)⊗min J → B(H)⊗min C
∗(F)→ B(H)⊗min A→ 0

is exact iff A has the LLP.

Since ⊗max is exact and C∗(F)⊗max B(H) = C∗(F)⊗min B(H),
we know

B(H)⊗min J B(H)⊗min C
∗(F) B(H)⊗minC

∗(F)
B(H)⊗minJ

B(H)⊗max J B(H)⊗max C
∗(F) B(H)⊗max A

It follows that A has LLP iff B(H)⊗max A = B(H)⊗min A.
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Tensorial Duality of WEP and LLP

Theorem (Kirchberg)

For any C∗-algebras A and B, we have the following for any infinite
dimensional Hilbert space H and any nonabelian free group F

1. A has the LLP iff B(H)⊗max A = B(H)⊗min A.

2. B has the WEP iff B ⊗max C
∗(F) = B ⊗min C

∗(F).

3. If A has the LLP and B has the WEP, then
A⊗max B = A⊗min B.

For (3), embed B ⊂ B(H). Then we have

A⊗max B(H) A⊗min B(H)

A⊗max B A⊗min B

LLP

WEP
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Characterizing the WEP

We say a C∗-algebra B characterizes the WEP if for any
C∗-algebra A, A has the WEP iff

A⊗max B = A⊗min B.

Using Kirchberg’s Duality theorem, one can readily show that B
characterizes the WEP if B has the LLP and C∗(F2) embeds into
B as the image of a conditional expectation.

Indeed, let A be any C∗-algebra, if A has WEP, then by Kirchberg’s
duality theorem, B ⊗max A = B ⊗min A. Conversely, since

C∗(F2)⊗max A ⊂ B ⊗max A,

if B � A has a unique tensor norm, then it follows that C∗(F2)� A
does as well.
See [6] and [9] for some examples.
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Characterizing the WEP

Proposition

If m > 2 or k > 2, then C∗(Z∗km ) characterizes the WEP.

As a finite dimensional C∗-algebra, C∗(Zm) has this lifting
property for all m ≥ 1.

Theorem (Boca, Pisier)

The LLP is preserved under taking free products.

It follows that each C∗(Z∗km ) = ∗ki=1C
∗(Zm) has the lifting

property.

When either m > 2 or k > 2, we can find a copy of F2 inside Z∗km .
Consequently, C∗(F2) embeds into C∗(Z∗km ) as the range of a
conditional expectation.
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