

Kirchberg's QWEP Conjecture: Between Connes' and Tsirelson's Problems

Kristin Courtney
WWU Münster

UK Operator Algebra Seminar, 2020

$$MIP^* = RE$$

Early this year, a negative answer to the Connes Embedding Problem was announced by Ji, Natarajan, Vidick, Wright and Yuen in their paper $MIP^* = RE$.

Question (Connes, 1976)

Does every separably acting type II_1 -factor embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

$$MIP^* = RE$$

Early this year, a negative answer to the Connes Embedding Problem was announced by Ji, Natarajan, Vidick, Wright and Yuen in their paper $MIP^* = RE$.

Question (Connes, 1976)

Does every separably acting type II_1 -factor embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

Actually, the authors use quantum complexity theory to give a negative answer to Tsirelson's problem from quantum information theory.

Tsirelson's Problem

The operator algebraic formulation of Tsirelson's Problem goes as follows.

For $m, k \geq 2$, write $\mathbb{Z}_m^{*k} = *_j^k \mathbb{Z}_m$.

Tsirelson's Problem

The operator algebraic formulation of Tsirelson's Problem goes as follows.

For $m, k \geq 2$, write $\mathbb{Z}_m^{*k} = *_{j=1}^k \mathbb{Z}_m$.

Theorem (Fritz, Junge et al, Ozawa)

Tsirelson's Problem has a positive solution if and only if for each $k, m \geq 2$ with either $k > 2$ or $m > 2$,

$$C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k}).$$

The Intermediate Steps

How do we get from \mathcal{R}^ω embeddings of II_1 -factors to tensor products of $C^*(\mathbb{Z}_m^{*k})$?

The Intermediate Steps

How do we get from \mathcal{R}^ω embeddings of II_1 -factors to tensor products of $C^*(\mathbb{Z}_m^{*k})$?

E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C^* -algebras. *Invent. Math.* **112** (1993), 449-489.

The Intermediate Steps

How do we get from \mathcal{R}^ω embeddings of II_1 -factors to tensor products of $C^*(\mathbb{Z}_m^{*k})$?

E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C^* -algebras. *Invent. Math.* **112** (1993), 449-489.

Many of the results and arguments therein (as well as some of Kirchberg's peripheral work) have been clarified and augmented by various authors in the ensuing years. In this talk, we rely heavily on expositions and improvements from Pisier, Ozawa, and Brown-Ozawa.

Goals

Consider the following conjectures.

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

The plan is to show

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1),$$

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

The plan is to show

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1), \quad (3) \Leftrightarrow (4),$$

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

The plan is to show

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1), \quad (3) \Leftrightarrow (4), \quad (3) \Leftrightarrow (5),$$

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

The plan is to show

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1), \quad (3) \Leftrightarrow (4), \quad (3) \Leftrightarrow (5), \quad (4) \Leftrightarrow (6).$$

Goals

Consider the following conjectures.

1. Connes' Embedding Problem.
2. Every C^* -algebra is QWEP (Kirchberg's QWEP Conjecture).
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

The plan is to show

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1), \quad (3) \Leftrightarrow (4), \quad (3) \Leftrightarrow (5), \quad (4) \Leftrightarrow (6).$$

The story begins with injectivity.

Injectivity

A unital C^* -algebra A is *injective* if for any embedding $A \subset B$, there exists a ucp projection $\psi : B \rightarrow A$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \xrightarrow{\text{id}_A} & A \end{array}$$

Injectivity

A unital C^* -algebra A is *injective* if for any embedding $A \subset B$, there exists a ucp projection $\psi : B \rightarrow A$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \xrightarrow{\text{id}_A} & A \end{array}$$

This ucp projection $\psi : B \rightarrow A$ is called a *conditional expectation*.

Injectivity

A unital C^* -algebra A is *injective* if for any embedding $A \subset B$, there exists a ucp projection $\psi : B \rightarrow A$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \xrightarrow{\text{id}_A} & A \end{array}$$

This ucp projection $\psi : B \rightarrow A$ is called a *conditional expectation*.

Theorem (Arveson)

Let $A \subset B$ be C^* -algebras and \mathcal{H} a Hilbert space. Any ucp map $\phi : A \rightarrow B(\mathcal{H})$ has a ucp extension $\psi : B \rightarrow B(\mathcal{H})$.

Weak Injectivity

Suppose instead that for some embedding $A \subset B$, there exists a ucp map $\psi : B \rightarrow A^{**}$, which extends the canonical embedding $A \hookrightarrow A^{**}$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \hookrightarrow & A^{**} \end{array}$$

Weak Injectivity

Suppose instead that for some embedding $A \subset B$, there exists a ucp map $\psi : B \rightarrow A^{**}$, which extends the canonical embedding $A \hookrightarrow A^{**}$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \hookrightarrow & A^{**} \end{array}$$

Such a map is called a *weak conditional expectation*.

Weak Injectivity

Suppose instead that for some embedding $A \subset B$, there exists a ucp map $\psi : B \rightarrow A^{**}$, which extends the canonical embedding $A \hookrightarrow A^{**}$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \hookrightarrow & A^{**} \end{array}$$

Such a map is called a *weak conditional expectation*. When every embedding of A yields a weak conditional expectation, we would say A has the *Weak Expectation Property* or WEP.

Weak Injectivity

Suppose instead that for some embedding $A \subset B$, there exists a ucp map $\psi : B \rightarrow A^{**}$, which extends the canonical embedding $A \hookrightarrow A^{**}$.

$$\begin{array}{ccc} B & & \\ \cup & \searrow \psi & \\ A & \hookrightarrow & A^{**} \end{array}$$

Such a map is called a *weak conditional expectation*. When every embedding of A yields a weak conditional expectation, we would say A has the *Weak Expectation Property* or WEP.

To show that A has the WEP, it suffices to check this on the embedding $\pi_u : A \rightarrow B(\mathcal{H}_A)$.

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes}_{\mathbb{N}} \mathbb{M}_2.$$

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes_{\mathbb{N}}} \mathbb{M}_2.$$

Proposition (Kirchberg)

WEP is closed under taking direct products.

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes_{\mathbb{N}}} \mathbb{M}_2.$$

Proposition (Kirchberg)

WEP is closed under taking direct products.

So, $\ell^\infty(\mathcal{R}) = \prod_{\mathbb{N}} \mathcal{R}$ has WEP

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes_{\mathbb{N}}} \mathbb{M}_2.$$

Proposition (Kirchberg)

WEP is closed under taking direct products.

So, $\ell^\infty(\mathcal{R}) = \prod_{\mathbb{N}} \mathcal{R}$ has WEP, which means that for any (free) ultrafilter $\omega \in \beta\mathbb{N} \setminus \mathbb{N}$,

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes_{\mathbb{N}}} \mathbb{M}_2.$$

Proposition (Kirchberg)

WEP is closed under taking direct products.

So, $\ell^\infty(\mathcal{R}) = \prod_{\mathbb{N}} \mathcal{R}$ has WEP, which means that for any (free) ultrafilter $\omega \in \beta\mathbb{N} \setminus \mathbb{N}$,

$$\mathcal{R}^\omega = \ell^\infty(\mathcal{R}) / \{(x_n) : \lim_{n \rightarrow \omega} \|x_n\|_{2, \tau_n} = 0\}$$

is a quotient of a WEP C^* -algebra,

Examples

All injective C^* -algebras have WEP, including the hyperfinite II_1 -factor

$$\mathcal{R} = \overline{\bigotimes}_{\mathbb{N}} \mathbb{M}_2.$$

Proposition (Kirchberg)

WEP is closed under taking direct products.

So, $\ell^\infty(\mathcal{R}) = \prod_{\mathbb{N}} \mathcal{R}$ has WEP, which means that for any (free) ultrafilter $\omega \in \beta\mathbb{N} \setminus \mathbb{N}$,

$$\mathcal{R}^\omega = \ell^\infty(\mathcal{R}) / \{(x_n) : \lim_{n \rightarrow \omega} \|x_n\|_{2, \tau_n} = 0\}$$

is a **quotient of a WEP C^* -algebra**, i.e. QWEP.

Examples

Proposition (Kirchberg)

If $A \subset B$ is the range of a conditional expectation $B \rightarrow A$, then $B \text{ (Q)WEP} \Rightarrow A \text{ (Q)WEP}$.

Examples

Proposition (Kirchberg)

If $A \subset B$ is the range of a conditional expectation $B \rightarrow A$, then $B \text{ (Q)WEP} \Rightarrow A \text{ (Q)WEP}$.

Proposition

If (N, τ) is a tracial von Neumann algebra, then any von Neumann subalgebra $M \subset N$ is the range of a conditional expectation $N \rightarrow M$.

Examples

Proposition (Kirchberg)

If $A \subset B$ is the range of a conditional expectation $B \rightarrow A$, then $B \text{ (Q)WEP} \Rightarrow A \text{ (Q)WEP}$.

Proposition

If (N, τ) is a tracial von Neumann algebra, then any von Neumann subalgebra $M \subset N$ is the range of a conditional expectation $N \rightarrow M$.

$(\mathcal{R}^\omega, tr^\omega)$ is a tracial von Neumann algebra

Examples

Proposition (Kirchberg)

If $A \subset B$ is the range of a conditional expectation $B \rightarrow A$, then $B \text{ (Q)WEP} \Rightarrow A \text{ (Q)WEP}$.

Proposition

If (N, τ) is a tracial von Neumann algebra, then any von Neumann subalgebra $M \subset N$ is the range of a conditional expectation $N \rightarrow M$.

$(\mathcal{R}^\omega, \text{tr}^\omega)$ is a tracial von Neumann algebra, which means every von Neumann subalgebra of \mathcal{R}^ω inherits QWEP.

CEP \Rightarrow QWEP

Let's see why a positive answer to Connes' Embedding problem would imply that every C^* -algebra is QWEP.

CEP \Rightarrow QWEP

Let's see why a positive answer to Connes' Embedding problem would imply that every C^* -algebra is QWEP.

Question (Connes, 1976)

Does every II_1 -factor with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

CEP \Rightarrow QWEP

Let's see why a positive answer to Connes' Embedding problem would imply that every C^* -algebra is QWEP.

Question (Connes, 1976)

Does every II_1 -factor with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

It follows from work of Popa that a positive answer to the above question implies a positive answer to:

Question

Does every tracial von Neumann algebra with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

CEP \Rightarrow QWEP

Let's see why a positive answer to Connes' Embedding problem would imply that every C^* -algebra is QWEP.

Question (Connes, 1976)

Does every II_1 -factor with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

It follows from work of Popa that a positive answer to the above question implies a positive answer to:

Question

Does every tracial von Neumann algebra with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

Suppose the answer is yes.

CEP \Rightarrow QWEP

Let's see why a positive answer to Connes' Embedding problem would imply that every C^* -algebra is QWEP.

Question (Connes, 1976)

Does every II_1 -factor with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

It follows from work of Popa that a positive answer to the above question implies a positive answer to:

Question

Does every tracial von Neumann algebra with separable predual embed into some ultrapower \mathcal{R}^ω of the hyperfinite II_1 -factor \mathcal{R} ?

Suppose the answer is yes. Then every finite von Neumann algebra with separable predual is QWEP.

CEP \Rightarrow QWEP

Proposition (Kirchberg)

If $\{A_\lambda\}_\lambda$ is an increasing net of QWEP C^ -algebras in $B(\mathcal{H})$, then $(\bigcup_\lambda A_\lambda)''$ is QWEP.*

CEP \Rightarrow QWEP

Proposition (Kirchberg)

If $\{A_\lambda\}_\lambda$ is an increasing net of QWEP C^ -algebras in $B(\mathcal{H})$, then $(\bigcup_\lambda A_\lambda)''$ is QWEP.*

It follows that CEP implies that every *semifinite* von Neumann algebra is QWEP

CEP \Rightarrow QWEP

Proposition (Kirchberg)

If $\{A_\lambda\}_\lambda$ is an increasing net of QWEP C^ -algebras in $B(\mathcal{H})$, then $(\bigcup_\lambda A_\lambda)''$ is QWEP.*

It follows that CEP implies that every *semifinite* von Neumann algebra is QWEP, because any semifinite von Neumann algebra can be written as $(\bigcup_\lambda M_\lambda)''$, where each M_λ is a tracial von Neumann algebra with separable predual.

CEP \Rightarrow QWEP

Proposition (Kirchberg)

If $\{A_\lambda\}_\lambda$ is an increasing net of QWEP C^ -algebras in $B(\mathcal{H})$, then $(\bigcup_\lambda A_\lambda)''$ is QWEP.*

It follows that CEP implies that every *semifinite* von Neumann algebra is QWEP, because any semifinite von Neumann algebra can be written as $(\bigcup_\lambda M_\lambda)''$, where each M_λ is a tracial von Neumann algebra with separable predual.

Corollary (to Takesaki's Modular Theory)

For any von Neumann algebra M , there is a semifinite von Neumann algebra N so that M embeds into N as the range of a conditional expectation.

(In particular, $N = M \rtimes_\alpha \mathbb{R}$ where α is the modular action.)

CEP \Rightarrow QWEP

Proposition (Kirchberg)

If $\{A_\lambda\}_\lambda$ is an increasing net of QWEP C^ -algebras in $B(\mathcal{H})$, then $(\bigcup_\lambda A_\lambda)''$ is QWEP.*

It follows that CEP implies that every *semifinite* von Neumann algebra is QWEP, because any semifinite von Neumann algebra can be written as $(\bigcup_\lambda M_\lambda)''$, where each M_λ is a tracial von Neumann algebra with separable predual.

Corollary (to Takesaki's Modular Theory)

For any von Neumann algebra M , there is a semifinite von Neumann algebra N so that M embeds into N as the range of a conditional expectation.

(In particular, $N = M \rtimes_\alpha \mathbb{R}$ where α is the modular action.)

It follows that CEP \Rightarrow all von Neumann algebras are QWEP.

CEP \Rightarrow QWEP

Proposition (Kirchberg)

A C^ -algebra A is QWEP iff A^{**} is QWEP.*

CEP \Rightarrow QWEP

Proposition (Kirchberg)

A C^ -algebra A is QWEP iff A^{**} is QWEP.*

So, if all von Neumann algebras are QWEP, then all C^* -algebras are also QWEP.

CEP \Rightarrow QWEP

Proposition (Kirchberg)

A C^ -algebra A is QWEP iff A^{**} is QWEP.*

So, if all von Neumann algebras are QWEP, then all C^* -algebras are also QWEP.

Theorem (Kirchberg)

CEP \Rightarrow Kirchberg's QWEP Conjecture.

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2)$$

Next is $(2) \Rightarrow (3)$.

From QWEP to WEP

For our argument, we reduce to the case where $C^*(\mathbb{F})$ is separable. The results are the same in the non-separable case, but the proofs are more involved.

From QWEP to WEP

For our argument, we reduce to the case where $C^*(\mathbb{F})$ is separable. The results are the same in the non-separable case, but the proofs are more involved.

If every C^* -algebra is QWEP, then, in particular, every separable free group C^* -algebra $C^*(\mathbb{F})$ is QWEP.

From QWEP to WEP

For our argument, we reduce to the case where $C^*(\mathbb{F})$ is separable. The results are the same in the non-separable case, but the proofs are more involved.

If every C^* -algebra is QWEP, then, in particular, every separable free group C^* -algebra $C^*(\mathbb{F})$ is QWEP.

It turns out this is enough to imply that all separable free group C^* -algebras have WEP.

From QWEP to WEP

For our argument, we reduce to the case where $C^*(\mathbb{F})$ is separable. The results are the same in the non-separable case, but the proofs are more involved.

If every C^* -algebra is QWEP, then, in particular, every separable free group C^* -algebra $C^*(\mathbb{F})$ is QWEP.

It turns out this is enough to imply that all separable free group C^* -algebras have WEP.

This is because, $C^*(\mathbb{F})$ has the “dual” property to the WEP: the *lifting property*.

From QWEP to WEP

Theorem (Kirchberg)

Let \mathbb{F} be a free group on countably many generators. Then for any C^* -algebras A and B with a surjective $*$ -homomorphism $\pi : B \rightarrow A$, any ucp map $\phi : C^*(\mathbb{F}) \rightarrow A$ lifts to a ucp map $\psi : C^*(\mathbb{F}) \rightarrow B$ such that $\pi\psi = \phi$.

$$\begin{array}{ccc} & B & \\ \psi \nearrow & \downarrow \pi & \\ C^*(\mathbb{F}) & \xrightarrow{\phi} & A \end{array}$$

From QWEP to WEP

$$B(\mathcal{H}_{C^*(\mathbb{F})})$$

∪

$$\pi_u(C^*(\mathbb{F}))''$$

∪

$$\pi_u(C^*(\mathbb{F}))$$

$$\pi_u \uparrow$$

$$C^*(\mathbb{F})$$

From QWEP to WEP

$$B(\mathcal{H}_{C^*(\mathbb{F})})$$

∪

$$C^*(\mathbb{F})^{**}$$

∪

$$C^*(\mathbb{F})$$

||

$$C^*(\mathbb{F})$$

From QWEP to WEP

$$B(\mathcal{H}_{C^*(\mathbb{F})})$$

(
 \cup

$$C^*(\mathbb{F})^{**}$$

\cup

$$C^*(\mathbb{F})$$

 ||

$$C^*(\mathbb{F})$$

From QWEP to WEP

$$\begin{array}{c} B(\mathcal{H}_{C^*(\mathbb{F})}) \\ \cup \\ C^*(\mathbb{F})^{**} \\ \cup \\ C^*(\mathbb{F}) \\ \parallel \quad \quad \quad \pi \\ C^*(\mathbb{F}) \quad \quad \quad B \end{array}$$

Suppose there is a C^* -algebra B with the WEP and a surjection $\pi : B \rightarrow C^*(\mathbb{F})$.

From QWEP to WEP

$$\begin{array}{c} B(\mathcal{H}_{C^*(\mathbb{F})}) \\ \cup \\ C^*(\mathbb{F})^{**} \\ \cup \\ C^*(\mathbb{F}) \\ \parallel \quad \swarrow \pi \\ C^*(\mathbb{F}) \xrightarrow[\text{LP}]{} B \end{array}$$

By Kirchberg's theorem, there exists a ucp map $C^*(\mathbb{F}) \rightarrow B$ so that the above diagram commutes.

From QWEP to WEP

$$B(\mathcal{H}_{C^*(\mathbb{F})})$$

∪

$$C^*(\mathbb{F})^{**}$$

∪

$$C^*(\mathbb{F})$$

||

$$C^*(\mathbb{F}) \xrightarrow{LP} B$$

$$B(\mathcal{H}_B)$$

↖
 π

Now, we identify B with its image in its universal representation $B(\mathcal{H}_B)$.

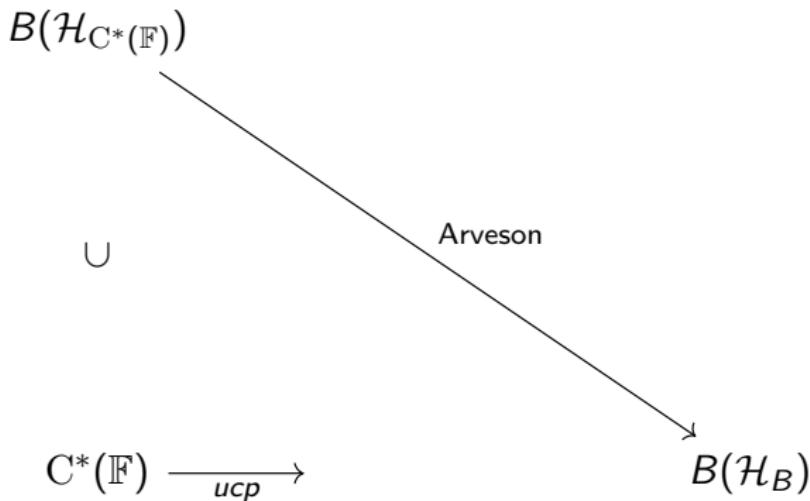
From QWEP to WEP

$$B(\mathcal{H}_{C^*(\mathbb{F})})$$

\cup

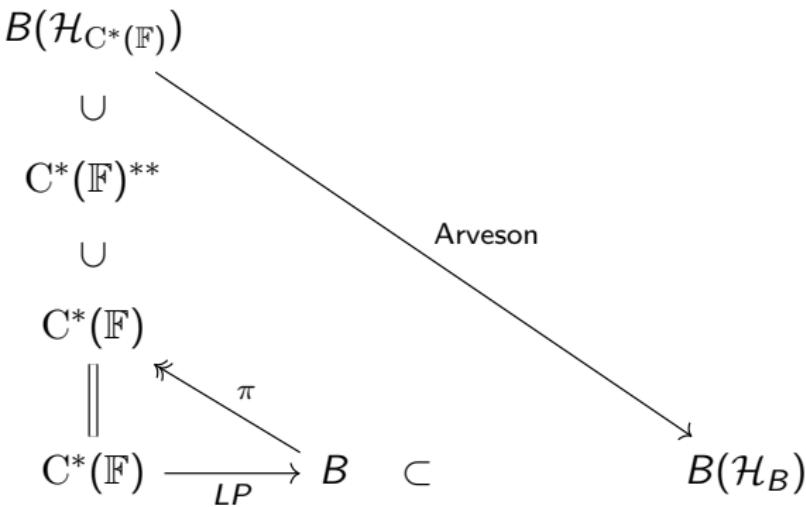
$$C^*(\mathbb{F}) \xrightarrow{ucp} B(\mathcal{H}_B)$$

From QWEP to WEP



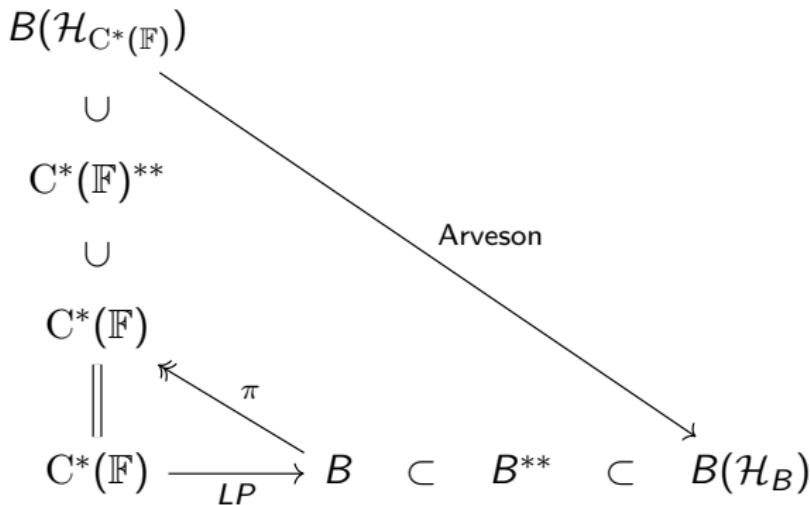
Arveson's theorem allows us to extend the map $C^*(\mathbb{F}) \rightarrow B(\mathcal{H}_B)$ to a ucp map $B(\mathcal{H}_{C^*(\mathbb{F})}) \rightarrow B(\mathcal{H}_B)$.

From QWEP to WEP



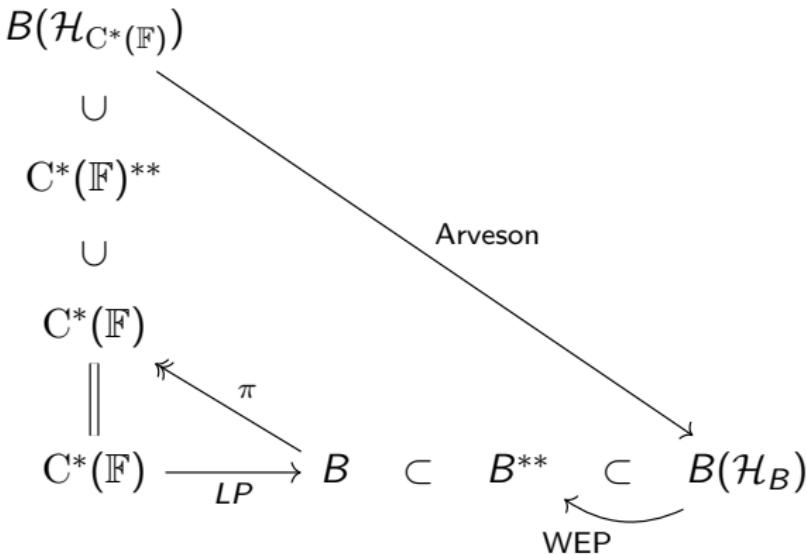
Arveson's theorem allows us to extend the map $C^*(\mathbb{F}) \rightarrow B(\mathcal{H}_B)$ to a ucp map $B(\mathcal{H}_{C^*(\mathbb{F})}) \rightarrow B(\mathcal{H}_B)$.

From QWEP to WEP



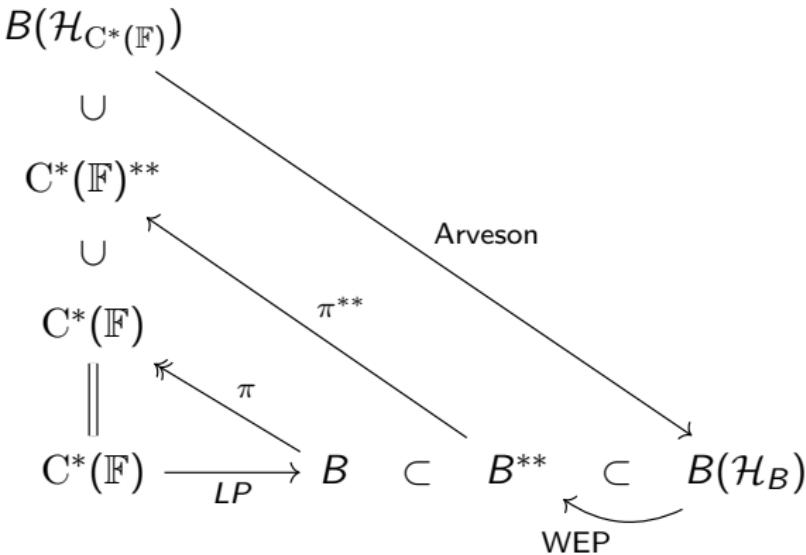
Inside $B(\mathcal{H}_B)$, B sits inside its double commutant, which we write as B^{**} .

From QWEP to WEP



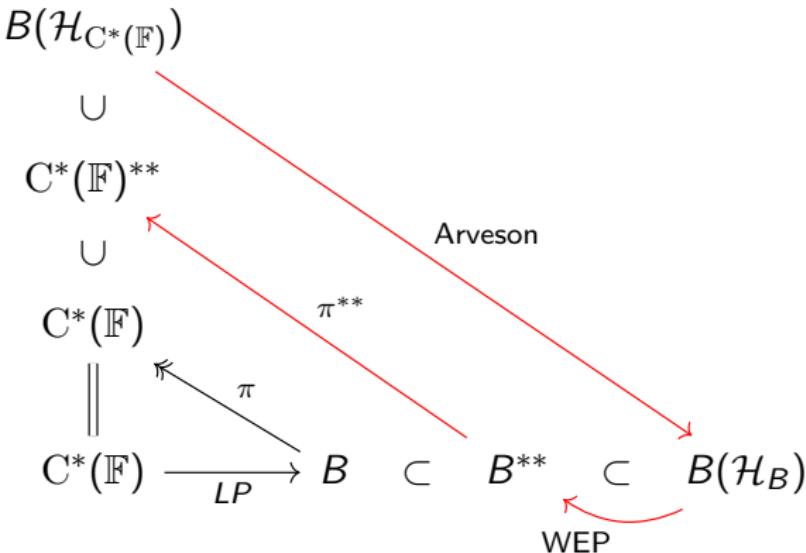
Since B has the WEP, there exists a ucp map $B(\mathcal{H}_B) \rightarrow B^{**}$, which restricts to the identity on B .

From QWEP to WEP



Let $\pi^{**} : B^{**} \rightarrow C^*(\mathbb{F})^{**}$ be the normal extension of $\pi : B \rightarrow C^*(\mathbb{F})$.

From QWEP to WEP



And thus we have our desired ucp map $B(\mathcal{H}_{C^*(\mathbb{F})}) \rightarrow C^*(\mathbb{F})^{**}$ that restricts to the identity on $C^*(\mathbb{F})$.

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3).$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3).$$

How do we get back to CEP?

Amenable Traces

Theorem (Connes, Kirchberg)

Let A be a separable unital C^* -algebra. TFAE for a tracial state τ on A .

1. τ is amenable.
2. There exists an embedding $\pi_\tau(A)'' \subset \mathcal{R}^\omega$ such that $\pi_\tau : A \rightarrow \pi_\tau(A)'' \subset \mathcal{R}^\omega$ has a ucp lift $A \rightarrow \ell^\infty(\mathcal{R})$ and $tr^\omega \pi_\tau = \tau$.
3. Given an embedding $A \subset B(\mathcal{H})$, there exists a ucp map $\psi : B(\mathcal{H}) \rightarrow \pi_\tau(A)''$ such that $\psi(a) = \pi_\tau(a)$ for all $a \in A$.

Amenable Traces

Theorem (Connes, Kirchberg)

Let A be a separable unital C^* -algebra. TFAE for a tracial state τ on A .

1. τ is amenable.
2. There exists an embedding $\pi_\tau(A)'' \subset \mathcal{R}^\omega$ such that $\pi_\tau : A \rightarrow \pi_\tau(A)'' \subset \mathcal{R}^\omega$ has a ucp lift $A \rightarrow \ell^\infty(\mathcal{R})$ and $tr^\omega \pi_\tau = \tau$.
3. Given an embedding $A \subset B(\mathcal{H})$, there exists a ucp map $\psi : B(\mathcal{H}) \rightarrow \pi_\tau(A)''$ such that $\psi(a) = \pi_\tau(a)$ for all $a \in A$.

$$\begin{array}{ccc} B(\mathcal{H}) & & \\ \cup & \searrow \psi & \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{c} B(\mathcal{H}) \\ \cup \\ A \xrightarrow{\pi_\tau} \pi_\tau(A)'' \end{array}$$

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & & \nearrow \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & \nearrow & \downarrow \tilde{\pi}_\tau \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & \nearrow & \downarrow \tilde{\pi}_\tau \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & \nearrow & \downarrow \tilde{\pi}_\tau \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Corollary

Any trace on a C^ -algebra that has the WEP is amenable.*

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & \nearrow & \downarrow \tilde{\pi}_\tau \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Corollary

Any trace on a C^ -algebra that has the WEP is amenable.*

Hence, if $C^*(\mathbb{F}_\infty)$ has the WEP, then every trace on $C^*(\mathbb{F}_\infty)$ is amenable.

Amenable Traces and WEP

Suppose $A \subset B(\mathcal{H})$ has WEP and tracial state τ .

$$\begin{array}{ccc} B(\mathcal{H}) & \xrightarrow{\text{WEP}} & A^{**} \\ \cup & \nearrow & \downarrow \tilde{\pi}_\tau \\ A & \xrightarrow{\pi_\tau} & \pi_\tau(A)'' \end{array}$$

Corollary

Any trace on a C^ -algebra that has the WEP is amenable.*

Hence, if $C^*(\mathbb{F}_\infty)$ has the WEP, then every trace on $C^*(\mathbb{F}_\infty)$ is amenable. This will imply CEP.

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ .

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ . Since M_* is separable, M contains a countable family of unitaries whose span is dense in the wk^* -topology on M .

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ . Since M_* is separable, M contains a countable family of unitaries whose span is dense in the wk^* -topology on M . That means there exists a $*$ -homomorphism $\psi : C^*(\mathbb{F}_\infty) \rightarrow M$ whose image is wk^* -dense in M .

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ . Since M_* is separable, M contains a countable family of unitaries whose span is dense in the wk^* -topology on M . That means there exists a $*$ -homomorphism $\psi : C^*(\mathbb{F}_\infty) \rightarrow M$ whose image is wk^* -dense in M . Then $\tau\psi$ is a tracial state on $C^*(\mathbb{F}_\infty)$, and we can identify $M \simeq \pi_{\tau\psi}(C^*(\mathbb{F}_\infty))''$.

$C^*(\mathbb{F}_\infty)$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ . Since M_* is separable, M contains a countable family of unitaries whose span is dense in the wk^* -topology on M . That means there exists a $*$ -homomorphism $\psi : C^*(\mathbb{F}_\infty) \rightarrow M$ whose image is wk^* -dense in M . Then $\tau\psi$ is a tracial state on $C^*(\mathbb{F}_\infty)$, and we can identify $M \simeq \pi_{\tau\psi}(C^*(\mathbb{F}_\infty))''$.

If $C^*(\mathbb{F}_\infty)$ has the WEP, then $\tau\psi$ is amenable, which gives us the embedding

$$\pi_{\tau\psi}(C^*(\mathbb{F}))'' \subset \mathcal{R}^\omega.$$

$C^*(\mathbb{F})$ has WEP \Rightarrow CEP

Proof Outline:

Suppose M is a II_1 -factor with separable predual M_* and faithful tracial state τ . Since M_* is separable, M contains a countable family of unitaries whose span is dense in the wk^* -topology on M . That means there exists a $*$ -homomorphism $\psi : C^*(\mathbb{F}_\infty) \rightarrow M$ whose image is wk^* -dense in M . Then $\tau\psi$ is a tracial state on $C^*(\mathbb{F}_\infty)$, and we can identify $M \simeq \pi_{\tau\psi}(C^*(\mathbb{F}_\infty))''$.

If $C^*(\mathbb{F}_\infty)$ has the WEP, then $\tau\psi$ is amenable, which gives us the desired embedding

$$M \simeq \pi_{\tau\psi}(C^*(\mathbb{F}))'' \subset \mathcal{R}^\omega.$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$

Now, let's talk tensors.

C*-Tensor Products

Given two unital C*-algebras A and B , the maximal norm on their algebraic tensor product is given by

$$\|x\|_{\max} = \sup\{\|\pi(x)\| : \pi : A \odot B \rightarrow B(\mathcal{H}) \text{ a } * \text{-representation}\}$$

for each $x \in A \odot B$.

C*-Tensor Products

Given two unital C*-algebras A and B , the maximal norm on their algebraic tensor product is given by

$$\|x\|_{\max} = \sup\{\|\pi(x)\| : \pi : A \odot B \rightarrow B(\mathcal{H}) \text{ a } * \text{-representation}\}$$

for each $x \in A \odot B$. We write

$$A \otimes_{\max} B = \overline{A \odot B}^{\|\cdot\|_{\max}}.$$

C*-Tensor Products

Given two unital C*-algebras A and B , the maximal norm on their algebraic tensor product is given by

$$\|x\|_{\max} = \sup\{\|\pi(x)\| : \pi : A \odot B \rightarrow B(\mathcal{H}) \text{ a } * \text{-representation}\}$$

for each $x \in A \odot B$. We write

$$A \otimes_{\max} B = \overline{A \odot B}^{\|\cdot\|_{\max}}.$$

Any $*$ -homomorphism $A \odot B \rightarrow C$ into a C*-algebra C extends to a unique $*$ -homomorphism $A \otimes_{\max} B \rightarrow C$.

C*-Tensor Products

Given two unital C*-algebras A and B , the maximal norm on their algebraic tensor product is given by

$$\|x\|_{\max} = \sup\{\|\pi(x)\| : \pi : A \odot B \rightarrow B(\mathcal{H}) \text{ a } * \text{-representation}\}$$

for each $x \in A \odot B$. We write

$$A \otimes_{\max} B = \overline{A \odot B}^{\|\cdot\|_{\max}}.$$

Any $*$ -homomorphism $A \odot B \rightarrow C$ into a C*-algebra C extends to a unique $*$ -homomorphism $A \otimes_{\max} B \rightarrow C$. In particular, any pair of $*$ -homomorphisms $A \rightarrow C$ and $B \rightarrow C$ with commuting ranges induces a unique $*$ -homomorphism $A \otimes_{\max} B \rightarrow C$.

C*-Tensor Products

Given two faithful representations $\pi_1 : A \rightarrow B(\mathcal{H}_1)$ and $\pi_2 : B \rightarrow B(\mathcal{H}_2)$, we define the spatial norm on $A \odot B$ by

$$\left\| \sum a_i \otimes b_i \right\| = \left\| \sum \pi_1(a_i) \otimes \pi_2(b_i) \right\|_{B(\mathcal{H}_1 \otimes \mathcal{H}_2)}.$$

C*-Tensor Products

Given two faithful representations $\pi_1 : A \rightarrow B(\mathcal{H}_1)$ and $\pi_2 : B \rightarrow B(\mathcal{H}_2)$, we define the spatial norm on $A \odot B$ by

$$\left\| \sum a_i \otimes b_i \right\| = \left\| \sum \pi_1(a_i) \otimes \pi_2(b_i) \right\|_{B(\mathcal{H}_1 \otimes \mathcal{H}_2)}.$$

Thanks to Takesaki, we know this is the smallest possible C*-norm on $A \odot B$, and hence we denote the closure by $A \otimes_{\min} B$.

C*-Tensor Products

Given two faithful representations $\pi_1 : A \rightarrow B(\mathcal{H}_1)$ and $\pi_2 : B \rightarrow B(\mathcal{H}_2)$, we define the spatial norm on $A \odot B$ by

$$\left\| \sum a_i \otimes b_i \right\| = \left\| \sum \pi_1(a_i) \otimes \pi_2(b_i) \right\|_{B(\mathcal{H}_1 \otimes \mathcal{H}_2)}.$$

Thanks to Takesaki, we know this is the smallest possible C*-norm on $A \odot B$, and hence we denote the closure by $A \otimes_{\min} B$.

The universal property of $A \otimes_{\max} B$ guarantees a natural surjective $*$ -homomorphism $A \otimes_{\max} B \rightarrow A \otimes_{\min} B$. When the map is injective, we write

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Examples of a Unique C*-tensor norm

Theorem (Choi-Effros, Kirchberg)

A C-algebra A is nuclear iff there is a unique C*-norm on $A \odot B$ for any C*-algebra B .*

Examples of a Unique C*-tensor norm

Theorem (Choi-Effros, Kirchberg)

A C-algebra A is nuclear iff there is a unique C*-norm on $A \odot B$ for any C*-algebra B .*

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Tensor Product Inclusions

If $A \subset B$ and C are C^* -algebras, then there is a natural inclusion

$$C \otimes_{\min} A \subset C \otimes_{\min} B.$$

Tensor Product Inclusions

If $A \subset B$ and C are C^* -algebras, then there is a natural inclusion

$$C \otimes_{\min} A \subset C \otimes_{\min} B.$$

However, in general, we cannot expect to have

$$C \otimes_{\max} A \subset C \otimes_{\max} B,$$

Tensor Product Inclusions

If $A \subset B$ and C are C^* -algebras, then there is a natural inclusion

$$C \otimes_{\min} A \subset C \otimes_{\min} B.$$

However, in general, we cannot expect to have

$$C \otimes_{\max} A \subset C \otimes_{\max} B,$$

i.e. there may be $x \in C \odot A$ for which

$$\|x\|_{C \otimes_{\max} A} > \|x\|_{C \otimes_{\max} B}.$$

Tensor Product Characterization of WEP

Theorem (Lance)

The following are equivalent for a unital C^ -algebra A ,*

- 1. For any C^* -algebras B and C with $A \subset B$, there is a natural inclusion*

$$C \otimes_{\max} A \subset C \otimes_{\max} B.$$

Tensor Product Characterization of WEP

Theorem (Lance)

The following are equivalent for a unital C^ -algebra A ,*

1. *For any C^* -algebras B and C with $A \subset B$, there is a natural inclusion*

$$C \otimes_{\max} A \subset C \otimes_{\max} B.$$

2. *For some (any) non-abelian free group \mathbb{F} and any C^* -algebra B with $A \subset B$, there is a natural inclusion*

$$C^*(\mathbb{F}) \otimes_{\max} A \subset C^*(\mathbb{F}) \otimes_{\max} B.$$

Tensor Product Characterization of WEP

Theorem (Lance)

The following are equivalent for a unital C^ -algebra A ,*

1. *For any C^* -algebras B and C with $A \subset B$, there is a natural inclusion*

$$C \otimes_{\max} A \subset C \otimes_{\max} B.$$

2. *For some (any) non-abelian free group \mathbb{F} and any C^* -algebra B with $A \subset B$, there is a natural inclusion*

$$C^*(\mathbb{F}) \otimes_{\max} A \subset C^*(\mathbb{F}) \otimes_{\max} B.$$

3. *A has the WEP.*

Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Corollary

For any C^ -algebra A and any nonabelian free group \mathbb{F} , A has the WEP iff $C^*(\mathbb{F}) \otimes_{\max} A = C^*(\mathbb{F}) \otimes_{\min} A$.*

Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Corollary

For any C^* -algebra A and any nonabelian free group \mathbb{F} , A has the WEP iff $C^*(\mathbb{F}) \otimes_{\max} A = C^*(\mathbb{F}) \otimes_{\min} A$.

(\Rightarrow) Embed $A \subset B(\mathcal{H})$. Then

$$\begin{array}{ccc} C^*(\mathbb{F}) \otimes_{\max} A & \subset & C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) \\ & & \parallel \\ C^*(\mathbb{F}) \otimes_{\min} A & \subset & C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}) \end{array}$$

Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Corollary

For any C^ -algebra A and any nonabelian free group \mathbb{F} , A has the WEP iff $C^*(\mathbb{F}) \otimes_{\max} A = C^*(\mathbb{F}) \otimes_{\min} A$.*

Corollary

For any free group \mathbb{F} , $C^(\mathbb{F})$ has the WEP iff*

$$C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F}).$$

Tensor Product Characterization of WEP

Theorem (Kirchberg)

For any free group \mathbb{F} and any Hilbert space \mathcal{H} ,

$$C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H}).$$

Corollary

For any C^ -algebra A and any nonabelian free group \mathbb{F} , A has the WEP iff $C^*(\mathbb{F}) \otimes_{\max} A = C^*(\mathbb{F}) \otimes_{\min} A$.*

Corollary

For any free group \mathbb{F} , $C^(\mathbb{F})$ has the WEP iff*

$$C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F}).$$

Remark

If any non-abelian free group C^ -algebra has WEP, then all have WEP.*

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \text{ and } (3) \Leftrightarrow (4)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \text{ and } (3) \Leftrightarrow (4)$$

So, how do the \mathbb{Z}_m^{*k} 's come into the picture?

Now with \mathbb{Z}_m^{*k} !

The free group C^* -algebras belong to a larger class of C^* -algebras that “characterize the WEP.” We say B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Now with \mathbb{Z}_m^{*k} !

The free group C^* -algebras belong to a larger class of C^* -algebras that “characterize the WEP.” We say B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Notice that if any C^* -algebra that characterizes the WEP **has** the WEP, then **every** C^* -algebra that characterizes the WEP has the WEP.

Now with \mathbb{Z}_m^{*k} !

The free group C^* -algebras belong to a larger class of C^* -algebras that “characterize the WEP.” We say B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Notice that if any C^* -algebra that characterizes the WEP **has** the WEP, then **every** C^* -algebra that characterizes the WEP has the WEP.

Using results of Kirchberg, Boca, and Pisier, one can readily show that $C^*(\mathbb{Z}_m^{*k})$ characterizes the WEP when either $m > 2$ or $k > 2$.

Now with \mathbb{Z}_m^{*k} !

That means, $C^*(\mathbb{F})$ has WEP iff $C^*(\mathbb{Z}_m^{*k})$ has WEP iff

$$C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k}).$$

Now with \mathbb{Z}_m^{*k} !

That means, $C^*(\mathbb{F})$ has WEP iff $C^*(\mathbb{Z}_m^{*k})$ has WEP iff

$$C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k}).$$

[Scholz, Werner] “The problem of Tsirelson is now to decide the question whether all quantum correlation functions between two independent observers derived from commuting observables can also be expressed using observables defined on a Hilbert space of tensor product form.”

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$$

Scorecard

Consider the following:

1. Connes' Embedding Problem
2. Every C^* -algebra is QWEP.
3. $C^*(\mathbb{F})$ has WEP for any (every) non-abelian free group \mathbb{F} .
4. $C^*(\mathbb{F}) \otimes_{\max} C^*(\mathbb{F}) = C^*(\mathbb{F}) \otimes_{\min} C^*(\mathbb{F})$ for any (every) non-abelian free group \mathbb{F} .
5. $C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k}) = C^*(\mathbb{Z}_m^{*k}) \otimes_{\min} C^*(\mathbb{Z}_m^{*k})$ for each $k, m \geq 2$ with either $k > 2$ or $m > 2$.
6. $C^*(\mathbb{F}_2 \times \mathbb{F}_2)$ is residually finite dimensional (RFD).

So far we have

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$$

Where does residual finite dimensionality come in?

Finite Dimensional Approximations

A C^* -algebra is *residually finite dimensional* (RFD) if it has a separating family of finite dimensional representations

Finite Dimensional Approximations

A C^* -algebra is *residually finite dimensional* (RFD) if it has a separating family of finite dimensional representations, i.e. it embeds into a direct product of matrix algebras:

$$A \hookrightarrow \prod_{\alpha} \mathbb{M}_{n_{\alpha}}.$$

Finite Dimensional Approximations

A C^* -algebra is *residually finite dimensional* (RFD) if it has a separating family of finite dimensional representations, i.e. it embeds into a direct product of matrix algebras:

$$A \hookrightarrow \prod_{\alpha} \mathbb{M}_{n_{\alpha}}.$$

Example

1. $C^*(\mathbb{F}_n)$ is RFD for $2 \leq n \leq \infty$. (Choi '80)
2. $C^*(\mathbb{Z}_m^{*k})$ is RFD for each $m, k \geq 2$. (Exel-Loring '92)

Finite Dimensional Approximations

A C^* -algebra is *residually finite dimensional* (RFD) if it has a separating family of finite dimensional representations, i.e. it embeds into a direct product of matrix algebras:

$$A \hookrightarrow \prod_{\alpha} \mathbb{M}_{n_{\alpha}}.$$

Example

1. $C^*(\mathbb{F}_n)$ is RFD for $2 \leq n \leq \infty$. (Choi '80)
2. $C^*(\mathbb{Z}_m^{*k})$ is RFD for each $m, k \geq 2$. (Exel-Loring '92)

Proposition

If A and B are RFD C^* -algebras, then $A \otimes_{\min} B$ is RFD, and $A \otimes_{\max} B$ is RFD iff $A \otimes_{\max} B = A \otimes_{\min} B$.

Finite Dimensional Approximations

So the QWEP conjecture is equivalent to asking whether or not

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2) \otimes_{\max} C^*(\mathbb{F}_2)$$

or

$$C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k})$$

can be approximated by their finite dimensional representations.

Finite Dimensional Approximations

So the QWEP conjecture is equivalent to asking whether or not

$$C^*(\mathbb{F}_2 \times \mathbb{F}_2) \simeq C^*(\mathbb{F}_2) \otimes_{\max} C^*(\mathbb{F}_2)$$

or

$$C^*(\mathbb{Z}_m^{*k}) \otimes_{\max} C^*(\mathbb{Z}_m^{*k})$$

can be approximated by their finite dimensional representations.

Theorem (Scholz, Werner)

[Tsirelson's] problem is equivalent to the question whether all quantum correlation functions can be approximated by correlation function derived from finite-dimensional systems.

Thanks!

Some recommended reading I

- N. Brown and N. Ozawa, *C*-algebras and Finite-Dimensional Approximations*. Graduate Studies in Mathematics, **88**. AMS, Providence, RI, 2008.
- N. Brown, Invariant means and finite representation theory of C*-algebras, *Mem. Amer. Math. Soc.* **184** (2006), viii+105 pp.
- F. Boca, Free products of completely positive maps and spectral sets, *J. Funct. Anal.* **97** (1991), 251-263.
- M.-D. Choi, The full C*-algebra of the free group on two generators, *Pacific J. Math.* **87** (1980), 41-48.
- A. Connes, Classification of injective factors, *Ann. of Math.* **104** (1976), 73-115.
- K. Courtney, Universal C*-algebras with the Local Lifting Property, to appear in *Math. Scand.*, (arXiv:2002.02365).
- E. G Effros and U. Haagerup, Lifting problems and local reflexivity for C*-algebras. *Duke Math. J.* **52** (1985), 103-128.
- R. Exel and T.A. Loring, Finite-dimensional representations of free product C*-algebras, *Internat. J. Math.* **3** (1992), 469-476.

Some recommended reading II

- D. Farenick, A. S. Kavruk, V. I. Paulsen, I. G. Todorov, Characterisations of the weak expectation property, *New York J. Math.* **24A** (2018), 107-135.
- T. Fritz, Tsirelson's problem and Kirchberg's conjecture. *Rev. Math. Phys.* **24** (2012), 67 pp.
- Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, $MIP^* = RE$, arXiv:2001.04383.
- M. Junge, M. Navascués, C. Palazuelos, D. Perez-Garcia, V.B. Scholz, and R.F. Werner, Connes' embedding problem and Tsirelson's problem. *J. Math. Phys.* **52** (2011), 12 pp.
- E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C^* -algebras. *Invent. Math.* **112** (1993), 449-489.
- E. Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of exactness, *J. reine angew. Math.* **452** (1994), 39-77.
- N. Ozawa, About the QWEP conjecture. *Internat. J. Math.* **15** (2004), 501-530.
- N. Ozawa, About the Connes embedding conjecture-Algebraic approaches. *Jpn. J. Math.* **8** (2013), 147-183.

Some recommended reading III

- G. Pisier, Introduction to operator space theory, *LMS Lecture Note Series*, **294**, Cambridge University Press, Cambridge, 2003. viii+478 pp.
- Pisier, G. *Tensor Products of C*-Algebras and Operator Spaces: The Connes–Kirchberg Problem*, LMS texts. Cambridge: Cambridge University Press, 2020.
- S. Popa, Orthogonal pairs of $*$ -subalgebras in finite von Neumann algebras, *J. Operator Theory* **9** (1983), 253-268.
- V. B. Scholz, R. F. Werner, Tsirelson's Problem, arXiv:0812.4305
- M. Takesaki, *Theory of Operator algebras II*, Springer-Verlag, Berlin, Heidelberg, New York, 2003.

The Lifting Property (again)

Recall that a crucial component of our proof that $\text{QWEP} \Rightarrow \text{C}^*(\mathbb{F})\text{-WEP}$ was that free group C^* -algebras have a so-called lifting property.

The Lifting Property (again)

Recall that a crucial component of our proof that $\text{QWEP} \Rightarrow \text{C}^*(\mathbb{F})$ WEP was that free group C^* -algebras have a so-called lifting property.

Let A , B , and C be unital C^* -algebras and $\pi : B \twoheadrightarrow C$ a surjective $*$ -homomorphism. A ucp map $\phi : A \rightarrow C$ is *liftable* if there exists a ucp map $\psi : A \rightarrow B$ such that $\pi\psi = \phi$.

$$\begin{array}{ccc} & B & \\ \psi \nearrow & \nearrow \pi & \\ A & \xrightarrow{\phi} & C \end{array}$$

The Lifting Property

A ucp map $\phi : A \rightarrow C$ is *locally liftable* if for any finite dimensional operator system $S \subset A$, the restriction $\phi|_S$ has a ucp lift $\psi : S \rightarrow B$.

$$\begin{array}{ccccc} & & B & & \\ & \nearrow \psi & \downarrow \pi & & \\ S & \subset & A & \xrightarrow{\phi} & C \end{array}$$

The Lifting Property

A ucp map $\phi : A \rightarrow C$ is *locally liftable* if for any finite dimensional operator system $S \subset A$, the restriction $\phi|_S$ has a ucp lift $\psi : S \rightarrow B$.

$$\begin{array}{ccccc} & & B & & \\ & \nearrow \psi & \downarrow \pi & & \\ S & \subset & A & \xrightarrow{\phi} & C \end{array}$$

A unital C^* -algebra has the *(local) lifting property (L)LP* if any ucp map from A into any C^* -quotient is (locally) liftable.

Examples

Corollary (Choi-Effros)

All nuclear C^ -algebras have the $(L)LP$.*

Examples

Corollary (Choi-Effros)

All nuclear C^ -algebras have the $(L)LP$.*

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.*

Examples

Corollary (Choi-Effros)

All nuclear C^ -algebras have the $(L)LP$.*

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.*

Corollary

Let A be a unital C^ -algebra and \mathbb{F} a free group such that $C^*(\mathbb{F})$ surjects onto A . Then A has the LLP iff id_A is locally liftable.*

Examples

Corollary (Choi-Effros)

All nuclear C^ -algebras have the (L)LP.*

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.*

Corollary

Let A be a unital C^ -algebra and \mathbb{F} a free group such that $C^*(\mathbb{F})$ surjects onto A . Then A has the LLP iff id_A is locally liftable.*

$$\begin{array}{ccc} & B & \\ & \downarrow & \\ A & \xrightarrow{\phi} & C \end{array}$$

Examples

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^*(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.

Corollary

Let A be a unital C^* -algebra and \mathbb{F} a free group such that $C^*(\mathbb{F})$ surjects onto A . Then A has the LLP iff id_A is locally liftable.

$$\begin{array}{ccc} C^*(\mathbb{F}) & & B \\ \downarrow & & \downarrow \\ A & \xrightarrow{\phi} & C \end{array}$$

Examples

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^*(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.

Corollary

Let A be a unital C^* -algebra and \mathbb{F} a free group such that $C^*(\mathbb{F})$ surjects onto A . Then A has the LLP iff id_A is locally liftable.

$$\begin{array}{ccc} C^*(\mathbb{F}) & \xrightarrow{\text{ucp}} & B \\ \downarrow & & \downarrow \\ A & \xrightarrow{\phi} & C \end{array}$$

Examples

Theorem (Kirchberg)

Let \mathbb{F} be any free group. Then $C^*(\mathbb{F})$ has the LLP, and it has the LP when \mathbb{F} is countable.

Corollary

Let A be a unital C^* -algebra and \mathbb{F} a free group such that $C^*(\mathbb{F})$ surjects onto A . Then A has the LLP iff id_A is locally liftable.

$$\begin{array}{ccccc} & & C^*(\mathbb{F}) & \xrightarrow{\text{ucp}} & B \\ & \nearrow \text{ucp} & \downarrow & & \downarrow \\ A & \xlongequal{\quad} & A & \xrightarrow{\phi} & C \end{array}$$

Back to Tensors

Suppose A, B, C are C^* -algebras and $A = B/J$ for some $J \triangleleft B$.

Back to Tensors

Suppose A, B, C are C^* -algebras and $A = B/J$ for some $J \triangleleft B$.

Then

$$0 \rightarrow C \otimes_{\max} J \rightarrow C \otimes_{\max} B \rightarrow C \otimes_{\max} A \rightarrow 0$$

is guaranteed to be exact,

Back to Tensors

Suppose A, B, C are C^* -algebras and $A = B/J$ for some $J \triangleleft B$.
Then

$$0 \rightarrow C \otimes_{\max} J \rightarrow C \otimes_{\max} B \rightarrow C \otimes_{\max} A \rightarrow 0$$

is guaranteed to be exact, but the sequence

$$0 \rightarrow C \otimes_{\min} J \rightarrow C \otimes_{\min} B \rightarrow C \otimes_{\min} A \rightarrow 0$$

may fail to be.

Effros-Haagerup

Theorem (Effros-Haagerup)

Let B be a C^* -algebra and $J \triangleleft B$. The following are equivalent

1. For any C^* -algebra C , the sequence

$$0 \rightarrow C \otimes_{\min} J \rightarrow C \otimes_{\min} B \rightarrow C \otimes_{\min} B/J \rightarrow 0$$

is exact.

2. The sequence

$$0 \rightarrow B(\mathcal{H}) \otimes_{\min} J \rightarrow B(\mathcal{H}) \otimes_{\min} B \rightarrow B(\mathcal{H}) \otimes_{\min} B/J \rightarrow 0$$

is exact for some infinite dimensional Hilbert space \mathcal{H} .

3. $\text{id}_{B/J}$ is locally liftable.

Effros-Haagerup

Theorem (Effros-Haagerup)

Let B be a C^* -algebra and $J \triangleleft B$. The following are equivalent

1. For any C^* -algebra C , the sequence

$$0 \rightarrow C \otimes_{\min} J \rightarrow C \otimes_{\min} B \rightarrow C \otimes_{\min} B/J \rightarrow 0$$

is exact.

2. The sequence

$$0 \rightarrow B(\mathcal{H}) \otimes_{\min} J \rightarrow B(\mathcal{H}) \otimes_{\min} B \rightarrow B(\mathcal{H}) \otimes_{\min} B/J \rightarrow 0$$

is exact for some infinite dimensional Hilbert space \mathcal{H} .

3. $\text{id}_{B/J}$ is locally liftable.

Consider $B = C^*(\mathbb{F})$ and $C^*(\mathbb{F})/J = A$.

Tensorial Characterization of the LLP

If $B = C^*(\mathbb{F})$ and $C^*(\mathbb{F})/J = A$, then the sequence

$$0 \rightarrow B(\mathcal{H}) \otimes_{\min} J \rightarrow B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F}) \rightarrow B(\mathcal{H}) \otimes_{\min} A \rightarrow 0$$

is exact iff A has the LLP.

Tensorial Characterization of the LLP

If $B = C^*(\mathbb{F})$ and $C^*(\mathbb{F})/J = A$, then the sequence

$$0 \rightarrow B(\mathcal{H}) \otimes_{\min} J \rightarrow B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F}) \rightarrow B(\mathcal{H}) \otimes_{\min} A \rightarrow 0$$

is exact iff A has the LLP.

Since \otimes_{\max} is exact and $C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H})$, we know

$$\begin{array}{ccccccc} B(\mathcal{H}) \otimes_{\min} J & \hookrightarrow & B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F}) & \twoheadrightarrow & \frac{B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F})}{B(\mathcal{H}) \otimes_{\min} J} \\ \parallel & & \parallel & & \parallel \\ B(\mathcal{H}) \otimes_{\max} J & \hookrightarrow & B(\mathcal{H}) \otimes_{\max} C^*(\mathbb{F}) & \twoheadrightarrow & B(\mathcal{H}) \otimes_{\max} A \end{array}$$

Tensorial Characterization of the LLP

If $B = C^*(\mathbb{F})$ and $C^*(\mathbb{F})/J = A$, then the sequence

$$0 \rightarrow B(\mathcal{H}) \otimes_{\min} J \rightarrow B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F}) \rightarrow B(\mathcal{H}) \otimes_{\min} A \rightarrow 0$$

is exact iff A has the LLP.

Since \otimes_{\max} is exact and $C^*(\mathbb{F}) \otimes_{\max} B(\mathcal{H}) = C^*(\mathbb{F}) \otimes_{\min} B(\mathcal{H})$, we know

$$\begin{array}{ccccccc} B(\mathcal{H}) \otimes_{\min} J & \hookrightarrow & B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F}) & \twoheadrightarrow & \frac{B(\mathcal{H}) \otimes_{\min} C^*(\mathbb{F})}{B(\mathcal{H}) \otimes_{\min} J} \\ \parallel & & \parallel & & \parallel \\ B(\mathcal{H}) \otimes_{\max} J & \hookrightarrow & B(\mathcal{H}) \otimes_{\max} C^*(\mathbb{F}) & \twoheadrightarrow & B(\mathcal{H}) \otimes_{\max} A \end{array}$$

It follows that A has LLP iff $B(\mathcal{H}) \otimes_{\max} A = B(\mathcal{H}) \otimes_{\min} A$.

Tensorial Duality of WEP and LLP

Theorem (Kirchberg)

For any C^* -algebras A and B , we have the following for any infinite dimensional Hilbert space \mathcal{H} and any nonabelian free group \mathbb{F}

1. A has the LLP iff $B(\mathcal{H}) \otimes_{\max} A = B(\mathcal{H}) \otimes_{\min} A$.
2. B has the WEP iff $B \otimes_{\max} C^*(\mathbb{F}) = B \otimes_{\min} C^*(\mathbb{F})$.
3. If A has the LLP and B has the WEP, then $A \otimes_{\max} B = A \otimes_{\min} B$.

Tensorial Duality of WEP and LLP

Theorem (Kirchberg)

For any C^* -algebras A and B , we have the following for any infinite dimensional Hilbert space \mathcal{H} and any nonabelian free group \mathbb{F}

1. A has the LLP iff $B(\mathcal{H}) \otimes_{\max} A = B(\mathcal{H}) \otimes_{\min} A$.
2. B has the WEP iff $B \otimes_{\max} C^*(\mathbb{F}) = B \otimes_{\min} C^*(\mathbb{F})$.
3. If A has the LLP and B has the WEP, then $A \otimes_{\max} B = A \otimes_{\min} B$.

For (3), embed $B \subset B(\mathcal{H})$. Then we have

$$\begin{array}{ccc} A \otimes_{\max} B(\mathcal{H}) & \xrightleftharpoons{\text{LLP}} & A \otimes_{\min} B(\mathcal{H}) \\ \uparrow \text{WEP} & & \uparrow \\ A \otimes_{\max} B & & A \otimes_{\min} B \end{array}$$

Tensorial Duality of WEP and LLP

Theorem (Kirchberg)

For any C^* -algebras A and B , we have the following for any infinite dimensional Hilbert space \mathcal{H} and any nonabelian free group \mathbb{F}

1. A has the LLP iff $B(\mathcal{H}) \otimes_{\max} A = B(\mathcal{H}) \otimes_{\min} A$.
2. B has the WEP iff $B \otimes_{\max} C^*(\mathbb{F}) = B \otimes_{\min} C^*(\mathbb{F})$.
3. If A has the LLP and B has the WEP, then
 $A \otimes_{\max} B = A \otimes_{\min} B$.

Characterizing the WEP

We say a C^* -algebra B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Using Kirchberg's Duality theorem, one can readily show that B characterizes the WEP if B has the LLP and $C^*(\mathbb{F}_2)$ embeds into B as the image of a conditional expectation.

Characterizing the WEP

We say a C^* -algebra B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Using Kirchberg's Duality theorem, one can readily show that B characterizes the WEP if B has the LLP and $C^*(\mathbb{F}_2)$ embeds into B as the image of a conditional expectation.

Indeed, let A be any C^* -algebra, if A has WEP, then by Kirchberg's duality theorem, $B \otimes_{\max} A = B \otimes_{\min} A$. Conversely, since

$$C^*(\mathbb{F}_2) \otimes_{\max} A \subset B \otimes_{\max} A,$$

if $B \odot A$ has a unique tensor norm, then it follows that $C^*(\mathbb{F}_2) \odot A$ does as well.

Characterizing the WEP

We say a C^* -algebra B characterizes the WEP if for any C^* -algebra A , A has the WEP iff

$$A \otimes_{\max} B = A \otimes_{\min} B.$$

Using Kirchberg's Duality theorem, one can readily show that B characterizes the WEP if B has the LLP and $C^*(\mathbb{F}_2)$ embeds into B as the image of a conditional expectation.

Indeed, let A be any C^* -algebra, if A has WEP, then by Kirchberg's duality theorem, $B \otimes_{\max} A = B \otimes_{\min} A$. Conversely, since

$$C^*(\mathbb{F}_2) \otimes_{\max} A \subset B \otimes_{\max} A,$$

if $B \odot A$ has a unique tensor norm, then it follows that $C^*(\mathbb{F}_2) \odot A$ does as well.

See [6] and [9] for some examples.

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

As a finite dimensional C^* -algebra, $C^*(\mathbb{Z}_m)$ has this lifting property for all $m \geq 1$.

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

As a finite dimensional C^* -algebra, $C^*(\mathbb{Z}_m)$ has this lifting property for all $m \geq 1$.

Theorem (Boca, Pisier)

The LLP is preserved under taking free products.

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

As a finite dimensional C^* -algebra, $C^*(\mathbb{Z}_m)$ has this lifting property for all $m \geq 1$.

Theorem (Boca, Pisier)

The LLP is preserved under taking free products.

It follows that each $C^*(\mathbb{Z}_m^{*k}) = *_i^k C^*(\mathbb{Z}_m)$ has the lifting property.

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

As a finite dimensional C^* -algebra, $C^*(\mathbb{Z}_m)$ has this lifting property for all $m \geq 1$.

Theorem (Boca, Pisier)

The LLP is preserved under taking free products.

It follows that each $C^*(\mathbb{Z}_m^{*k}) = *_i^k C^*(\mathbb{Z}_m)$ has the lifting property.

When either $m > 2$ or $k > 2$, we can find a copy of \mathbb{F}_2 inside \mathbb{Z}_m^{*k} .

Characterizing the WEP

Proposition

If $m > 2$ or $k > 2$, then $C^(\mathbb{Z}_m^{*k})$ characterizes the WEP.*

As a finite dimensional C^* -algebra, $C^*(\mathbb{Z}_m)$ has this lifting property for all $m \geq 1$.

Theorem (Boca, Pisier)

The LLP is preserved under taking free products.

It follows that each $C^*(\mathbb{Z}_m^{*k}) = *_i^k C^*(\mathbb{Z}_m)$ has the lifting property.

When either $m > 2$ or $k > 2$, we can find a copy of \mathbb{F}_2 inside \mathbb{Z}_m^{*k} . Consequently, $C^*(\mathbb{F}_2)$ embeds into $C^*(\mathbb{Z}_m^{*k})$ as the range of a conditional expectation.