

# Generalized inductive limits with asymptotically order zero maps

Kristin Courtney  
joint with Wilhelm Winter

WWU Münster

NCG Online Seminar 2021



## Part I: Inductive limits of $C^*$ -algebras

## Inductive limits of $C^*$ -algebras

An *inductive system* of  $C^*$ -algebras consists of a sequence  $(A_n)_n$  of  $C^*$ -algebras together with connecting  $*$ -homomorphisms

$$A_0 \xrightarrow{\rho_{1,0}} A_1 \xrightarrow{\rho_{2,1}} A_2 \rightarrow \dots$$

For each  $k \geq 0$ , the quotient map  $\pi : \prod_n A_n \rightarrow \prod_n A_n / \bigoplus_n A_n$  induces a  $*$ -homomorphism  $\rho_k : A_k \rightarrow \prod_n A_n / \bigoplus_n A_n$  by

$$\rho_k(a) := \pi((\rho_{n,k}(a))_{n>k}), \quad \forall a \in A_k.$$

The *inductive limit* of the system  $(A_n, \rho_{m,n})$  is the  $C^*$ -algebra

$$A := \overline{\bigcup_{k \geq 0} \rho_k(A_k)} \subset \prod_n A_n / \bigoplus_n A_n.$$

# Inductive limits of $C^*$ -algebras

This construction has provided many interesting examples of  $C^*$ -algebras:

## Example

- Approximately Finite (AF) algebras  
(inductive limits of finite dimensional  $C^*$ -algebras)
- Approximately Circle ( $A\mathbb{T}$ ) algebras  
(inductive limits of direct sums of matrix algebras over  $C(\mathbb{T})$ )
- Approximately Homogeneous (AH) algebras  
(inductive limits of homogeneous  $C^*$ -algebras,  
i.e., corners of matrix algebras over  $C(X)$  for some compact  
Hausdorff  $X$ .)

# Inductive limits of $C^*$ -algebras

It has also shed light on the structure of many naturally occurring  $C^*$ -algebras:

## Theorem

*A simple, separable, unital  $C^*$ -algebra  $A$  fits into the Elliott classification program (meaning it can be classified by its  $K$ -theory and traces) if it is*

- [Elliott] AF,
- [Elliott]  $A\mathbb{T}$  with Real Rank Zero (i.e.,  $A_{s.a.} = \overline{GL(A) \cap A_{s.a.}}$ )  
([Elliot-Evans] This includes irrational rotation algebras), or
- [Dadarlat–Elliott–Gong] AH with Real Rank Zero and “slow dimension growth.”

## Generalized inductive limits

Working with these inductive systems, one realizes that on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced generalized inductive systems of  $C^*$ -algebras, where the connecting maps only *asymptotically* behave like  $*$ -homomorphisms. They showed that the limits of such systems form important classes of  $C^*$ -algebras.

Ignoring the full generality of their constructions, we focus on their so-called *NF systems*.

# NF systems

## Definition

An *NF system* consists of a sequence  $(F_n)_n$  of finite dimensional  $C^*$ -algebras together with asymptotically multiplicative completely positive contractive (cpc) maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

*Asymptotically multiplicative* means that for any  $k \geq 0$ ,  $x, y \in F_k$ , and  $\varepsilon > 0$ , there exists an  $M > k$  such that for all  $m > n > M$ ,

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

The inductive limit of an NF system is formed the same as before:  
 $\overline{\bigcup_k \rho_k(F_k)} \subset \prod_n F_n / \bigoplus F_n$  where  $\rho_k : F_k \rightarrow \prod_n F_n / \bigoplus F_n$  are the induced cpc maps.

## NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a  $C^*$ -algebra, which we call an *NF Algebra*.

### Theorem (BK)

A separable  $C^*$ -algebra  $A$  is NF iff it admits a cpc approximation with asymptotically multiplicative maps, i.e., there exists a sequence of finite dimensional  $C^*$ -algebras  $(F_n)_n$  and cpc maps

$A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$  so that for all  $a, b \in A$ ,

$$\begin{aligned}\|\varphi_n \circ \psi_n(a) - a\| &\rightarrow 0 \text{ and} \\ \|\psi_n(a)\psi_n(b) - \psi_n(ab)\| &\rightarrow 0.\end{aligned}$$

In particular, these  $C^*$ -algebras are nuclear, and we have an approximately commutative diagram.

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A \dots \\ & \searrow \psi_0 & \swarrow \varphi_0 & \searrow \psi_1 & \swarrow \varphi_1 & \searrow \psi_2 & \swarrow \varphi_2 \\ & & F_0 & & F_1 & & F_2 \dots \end{array}$$

# NF Algebras

## Theorem (BK)

*NF C\*-algebras are exactly the separable nuclear C\*-algebras which are quasidiagonal.*

## Definition

A separable C\*-algebra  $A$  is *quasidiagonal* if it admits a sequence of cpc maps  $\psi_n : A \rightarrow F_n$  which are

- asymptotically multiplicative ( $\|\psi_n(a)\psi_n(b) - \psi_n(ab)\| \rightarrow 0$ ) &
- asymptotically isometric ( $\|a\| = \lim_n \|\psi_n(a)\|$ ).

But what if we just want to get at nuclear C\*-algebras?

To do so, we must relax the asymptotically multiplicative assumption, but then the inductive limit fails to be an algebra.

We need to relax multiplicativity without losing the C\*-structure.

## Part II: Order Zero Maps

# Order Zero Maps

## Definition

A cp map  $\psi : A \rightarrow B$  between  $C^*$ -algebras is called *order zero* if it is orthogonality preserving:

$$ab = 0 \implies \psi(a)\psi(b) = 0, \quad \forall a, b \in A_+.$$

## Theorem (Winter-Zacharias)

Let  $A$  and  $B$  be  $C^*$ -algebras with  $A$  unital. A cp map  $\psi : A \rightarrow B$  is order zero iff

$$\psi(a)\psi(b) = \psi(1_A)\psi(ab), \quad \forall a, b \in A.$$

## Remark

Note that if  $\psi(1_A) = 1_B$ , then  $\psi$  is a  $*$ -homomorphism.

## Order Zero Maps

These are a natural step-down from  $*$ -homomorphisms, and they actually retain a lot of the same nice properties.

### Theorem (Wolf)

*If  $\psi : A \rightarrow B$  is a cp order zero map from a unital  $C^*$ -algebra  $A$ , then  $\psi(1_A) \in \psi(A)'$ .*

### Proposition (WZ)

*If  $\psi : A \rightarrow B$  is a cp order zero map, then so are all of its matrix amplifications  $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$ .*

In other words, an order zero map is completely order zero.

### Proposition

*If  $\psi : A \rightarrow B$  is an injective cp order zero map, then  $\psi^{-1}(\psi(A) \cap B_+) = A_+$ . Moreover, if a cp order zero map is invertible (on its image), its inverse is automatically cp.*

## Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a  $C^*$ -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a  $C^*$ -algebra out of the image outright.

In particular, for a cpc order zero map  $\psi : A \rightarrow B$  from a unital  $C^*$ -algebra, setting  $X := \psi(A)$  and  $e := \psi(1_A)$ , we have the following:

1. [W]  $e \in X' \cap X$
2. [WZ]  $X^2 := \{xy : x, y \in X\} = \{ez : z \in X\} =: eX$ , and
3.  $e$  is an order unit for  $X \subset B$ .

# An order unit

## Definition

Given a self-adjoint subspace  $X$  of a  $C^*$ -algebra  $B$ . We say a positive element  $e \in X$  is an *order unit* for  $X$  if for each  $x = x^* \in X$ , there exists an  $R > 0$  so that  $Re \geq x$ .

We say  $e$  is a *uniform order unit* if  $\|x\|e \geq x$  for all  $x = x^* \in X$ .

## Example

- The unit of a unital  $C^*$ -algebra  $A$  is a uniform order unit for  $A$ .
- $\text{id}_{(0,1]}$  is a uniform order unit for  $\mathbb{C}\text{id}_{(0,1]} \subset C_0((0, 1])$ .
- $\text{id}_{(0,1]} \otimes 1_A$  is a uniform order unit for  $\text{id}_{(0,1]} \otimes A \subset C_0((0, 1]) \otimes A$ .
- If  $\rho : A \rightarrow B$  is a cp map, then  $\rho(1_A)$  is an order unit for  $\rho(A)$ . It is a uniform order unit when  $\rho$  is cp order zero and isometric.

## A $C^*$ -structure

It turns out these three criteria are enough to define a pre- $C^*$ -structure on a self-adjoint subspace of a  $C^*$ -algebra.

### Theorem (C.-Winter)

Let  $B$  be a  $C^*$ -algebra,  $X \subset B$  a self-adjoint subspace, and  $e \in B_+^1$  a distinguished element satisfying

1.  $e \in X' \cap X$
2.  $X^2 = eX$ , and
3.  $e$  is an order unit for  $X$ .

Then there is an associative bilinear map  $\bullet : X \times X \rightarrow X$  satisfying

$$xy = e(x \bullet y) \quad \forall x, y \in X$$

so that  $(X, \bullet)$  is a  $*$ -algebra with unit  $e$ .

Moreover, there exists a pre- $C^*$ -norm  $\|\cdot\|_\bullet$  on  $(X, \bullet)$ , and  $X = \overline{X}^{\|\cdot\|_\bullet}$  already when  $X = \overline{X}^{\|\cdot\|_B}$ .

## A $C^*$ -structure

For a self-adjoint subspace  $X$  of a  $C^*$ -algebra  $B$  with distinguished element  $e \in B_+^1$ , we abbreviate the criteria that gave us a pre- $C^*$ -structure on  $X$  as follows:

$$(C^*) \left\{ \begin{array}{l} 1. \ e \in X' \cap X \\ 2. \ X^2 = eX, \text{ and} \\ 3. \ e \text{ is an order unit for } X. \end{array} \right.$$

Whenever  $(X, e)$  satisfy  $(C^*)$ , we can define multiplication  $\bullet : X \times X \rightarrow X$  and a pre- $C^*$ -norm  $\|\cdot\|_\bullet$  on  $X$ .

We write  $X_\bullet := \overline{(X, \bullet)}^{\|\cdot\|_\bullet}$  for the completion.

## Images of cpc order zero maps

For a self-adjoint  $X \subset B$  with distinguished  $e \in B_+^1$  so that  $(X, e) \subset B$  satisfy  $(C^*)$ , it turns out that the map

$$X_\bullet \supseteq X \xrightarrow{\text{id}_X} X \subset B$$

extends to a cpc order zero map  $X_\bullet \rightarrow B$ .

### Theorem (CW)

The following are equivalent for a self-adjoint subspace  $X \subset B$  of a  $C^*$ -algebra  $B$  with distinguished  $e \in B_+^1$ .

- a. There exists a unital  $C^*$ -algebra  $A$  and cpc order zero map  $\psi : A \rightarrow B$  such that  $X = \psi(A)$  and  $e = \psi(1_A)$ .
- b.  $(X, e)$  satisfies  $(C^*)$  and  $X = \overline{X}^{\|\cdot\|_\bullet}$  (i.e.,  $X = X_\bullet$  as sets).

### Remark

For any unital  $C^*$ -algebra  $A$  with injective cp order zero map  $\psi : A \rightarrow B$  with  $\psi(A) = X$  and  $\psi(1_A) = e$ , the map  $\text{id}_X^{-1} \circ \psi : A \rightarrow X_\bullet$  becomes a  $*$ -isomorphism.

## Closed images of cpc order zero maps

One case where we always are guaranteed an injective cp order zero map is when  $X$  is closed in  $B$ .

### Theorem (CW)

*The following are equivalent for a **closed** self-adjoint subspace  $X \subset B$  of a  $C^*$ -algebra  $B$  with distinguished  $e \in B_+^1$ .*

- There exists a unital  $C^*$ -algebra  $A$  and an **injective** cp order zero map  $\psi : A \rightarrow B$  such that  $X = \psi(A)$  and  $e = \psi(1_A)$ .*
- $(X, e)$  satisfies  $(C^*)$ .*

*This comes from the fact that  $X = \overline{X}^{\|\cdot\|_\bullet}$  when  $X \subset B$  is closed, which means  $\text{id}_X : X_\bullet \rightarrow X \subset B$  is already a cpc order zero map, which is a complete order isomorphism by virtue of being injective.*

## Part III: Generalized NF Systems

## Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative” requirement from the NF systems:

### Definition

An *NF system* consists of a sequence  $(F_n)_n$  of finite dimensional  $C^*$ -algebras together with *asymptotically multiplicative* completely positive contractive (cpc) maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

But the issue was that, without asymptotic multiplicativity, the limit need not be a  $C^*$ -algebra.

Now we are equipped to overcome that hurdle.

## Generalizing generalized inductive limits

Given a sequence  $(F_n)_n$  of finite dimensional  $C^*$ -algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

we still have induced cpc maps  $\rho_k : F_k \rightarrow \prod_n F_n / \bigoplus_n F_n =: F_\infty$ , and we can still form the limit

$$X = \overline{\bigcup_k \rho_k(F_k)} \subset F_\infty.$$

Though  $X$  may not be a  $C^*$ -algebra, if we can guarantee that there some  $e \in (F_\infty)_+^1$  so that  $(X, e)$  satisfy  $(C^*)$ , then it will be completely order isomorphic to the  $C^*$ -algebra  $X_\bullet$  via the injective cpc order zero map  $\text{id}_X : X_\bullet \rightarrow X \subset F_\infty$ .

## Encoding ( $C^*$ )

The task is to encode ( $C^*$ ) into a system

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

of cpc maps between finite dimensional  $C^*$ -algebras.

We want conditions on the system which guarantee that we have an element  $e \in (F_\infty)_+^1$  so that the limit  $X$  together with  $e$  satisfy

$$(C^*) \left\{ \begin{array}{l} 1. \quad e \in X' \cap X \\ 2. \quad X^2 = eX, \text{ and} \\ 3. \quad e \text{ is an order unit for } X. \end{array} \right.$$

## An approximately central order unit

To find a positive contraction  $e \in X \cap X'$ , we need a sequence  $(e_n)_n \in \prod_n (F_n)_+^1$  that is

- *asymptotically coherent*, which guarantees that  $(\rho_n(e_n))_n \subset X$  is Cauchy, and
- *asymptotically central*, which guarantees that  $e := \lim_n \rho_n(e_n)$  commutes with  $X$ .

To ensure  $e$  is an order unit for  $X$ , we require that  $(e_n)_n$  is an

- *asymptotic uniform order unit*, which guarantees that  $\|\rho_n(x)\|e \geq \rho_n(x)$  for every  $n \geq 0$ ,  $x = x^* \in F_n$ .

Under these three assumptions, we get a positive contraction  $e \in X' \cap X$  that is an order unit for  $X$ .

Let's call such a sequence an *asymptotically central order unit*.

## Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ( $\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$ ), which translates to  $X^2 = eX$ .

We arrange for this by requiring that our system be

- *asymptotically order zero with respect to  $(e_n)_n$ .*

This condition tells us how to build, for any  $k \geq 0$  and  $x, y \in F_k$ , an element  $z \in \overline{\bigcup_n \rho_n(F_n)}$  so that  $ez = \rho_k(x)\rho_k(y)$ .

It turns out this is enough to get  $X^2 = eX$ .

### Remark

*Just as with order zero maps, if these maps are asymptotically unital (i.e.  $\|e_n - 1_{F_n}\| \rightarrow 0$ ), then the resulting sequence is asymptotically multiplicative, and we land back in the NF setting.*

# Generalized NF systems

(Working title)

## Definition (CW)

A *generalized NF system*  $(F_n, \rho_{m,n}, e_n)$  consists of a sequence  $(F_n)_n$  of finite dimensional  $C^*$ -algebras with cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

that are asymptotically order zero with respect to an asymptotically central order unit  $(e_n)_n \in \prod_n (F_n)_+^1$ .

## Example (BK, WZ, Brown-Carrión-White, CW)

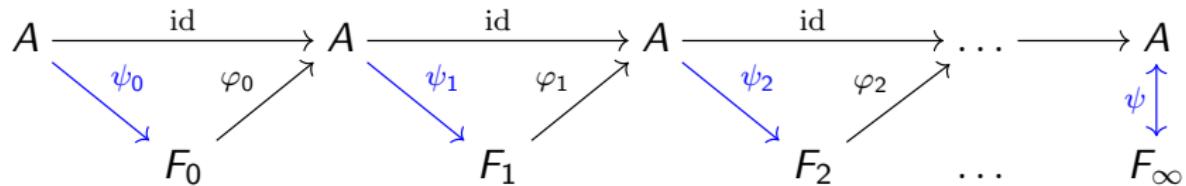
Any separable, unital, nuclear  $C^*$ -algebra  $A$  admits a cpc approximation  $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$  so that  $(F_n, \psi_m \circ \dots \circ \varphi_n, \psi_n(1_A))$  forms a generalized NF system.

## Generalized NF systems from cpc approximations

A cpc approximation  $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$  of a unital  $C^*$ -algebra with *asymptotically order zero maps*  $(\psi_n : A \rightarrow F_n)_n$

(i.e.,  $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0, \forall a, b \in A$ )

induces a completely isometric cp order zero map  $\psi : A \rightarrow F_\infty$ :

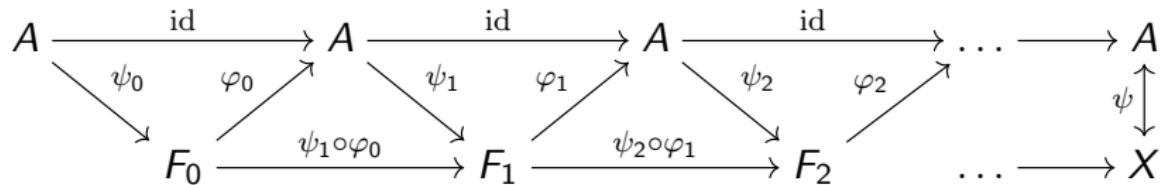


## Generalized NF systems from cpc approximations

A cpc approximation  $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$  of a unital  $C^*$ -algebra with *asymptotically order zero maps*  $(\psi_n : A \rightarrow F_n)_n$

(i.e.,  $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0, \forall a, b \in A$ )

induces a completely isometric cp order zero map  $\psi : A \rightarrow F_\infty$ :



After passing to a subsystem, we can guarantee that  
 $\psi(A) = \lim_{\rightarrow} (F_n, \psi_m \circ \dots \circ \varphi_n) =: X$ .

The fact that  $\psi$  is cpc order zero will imply that the system is asymptotically order zero with respect to the asymptotically central order unit  $(\psi_n(1_A))_n$ . ( $\rightsquigarrow \psi(1_A)$  is the central order unit for  $X$ .)

## Limits of generalized NF systems

By encoding  $(C^*)$  into our definition of generalized NF systems, we have guaranteed that the inductive limit  $X \subset F_\infty$  along with  $e := \lim_n \rho_n(e_n)$  satisfy  $(C^*)$ .

Hence, we have the following.

### Theorem (CW)

*The inductive limit  $X$  of a generalized NF system is completely order isomorphic to a unital  $C^*$ -algebra  $X_\bullet$  via an injective cpc order zero map  $\text{id}_X : X_\bullet \rightarrow X \subset F_\infty$ .*

*Moreover, if  $A$  is a unital  $C^*$ -algebra and  $\psi : A \rightarrow F_\infty$  is an injective cpc order zero map with  $\psi(A) = X$  and  $\psi(1_A) = e$ , then  $A \simeq X_\bullet$ .*

## Limits of generalized NF systems from cpc approximations

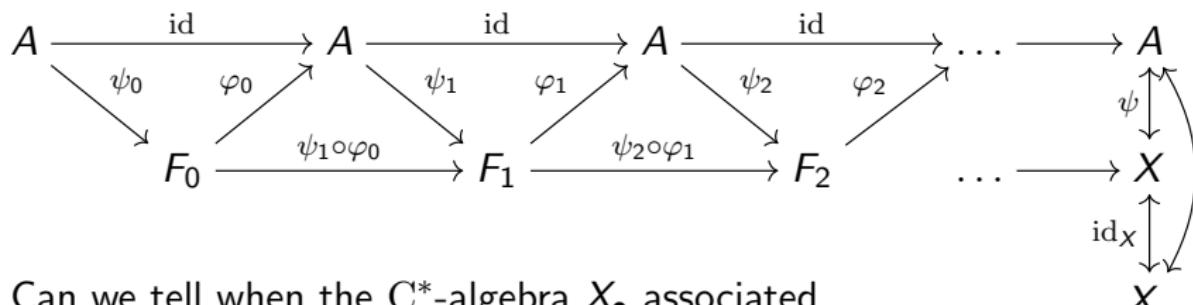
### Corollary (CW)

Let  $A$  be a separable, unital, nuclear  $C^*$ -algebra and

$A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$  a cpc approximation so that

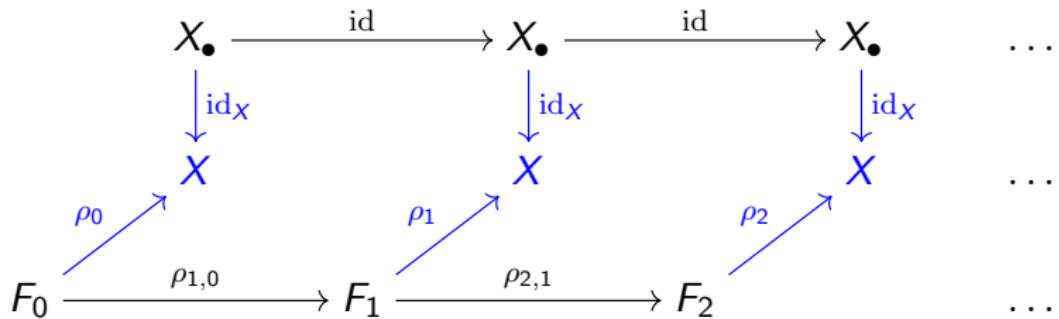
$(F_n, \psi_m \circ \dots \circ \varphi_n, \psi_n(1_A))$  forms a generalized NF system.

Then  $A$  is  ${}^*$ -isomorphic to  $X_\bullet$ .



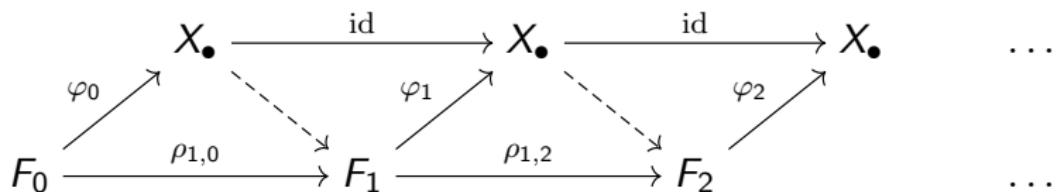
Can we tell when the  $C^*$ -algebra  $X_\bullet$  associated to a generalized NF system is nuclear?

## CPAP for a generalized NF system?



Notice that  $\text{id}_X^{-1}$  is cp, and so  $\varphi_n := \text{id}_X^{-1} \circ \rho_n$  are cpc.

# CPAP for a generalized NF system?



## Question

*Can we come up with the downwards maps to get a completely positive approximation?*

[Winter] If we assume the upwards maps are decomposable into a direct sum of a bounded number of cpc order zero maps, then yes.

## Without downwards maps

It turns out that we still get nuclearity without the downwards maps by invoking a “one-way CPAP.”

### Theorem (Sato, Ozawa)

*A  $C^*$ -algebra is nuclear iff there exists a net  $(\rho_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$  of cpc maps from finite dimensional  $C^*$ -algebras such that the induced cpc map*

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\rho_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left( \left( \frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

### Remark

*The proof goes by showing that  $A^{**}$  is hyperfinite, not by constructing the downwards maps.*

# Nuclear $C^*$ -algebras from limits of generalized NF systems

## Theorem (CW)

*The inductive limit  $X$  of a generalized NF system is completely order isomorphic to a unital **nuclear**  $C^*$ -algebra  $X_\bullet$  via an injective cp order zero map  $\text{id}_X : X_\bullet \rightarrow X \subset F_\infty$ .*

## Removing quasidiagonality

Recall Blackadar and Kirchberg's characterization of NF algebras as the separable nuclear quasidiagonal  $C^*$ -algebras:

### Theorem (BK)

*The following are equivalent for a separable  $C^*$ -algebra  $A$ :*

1.  *$A$  is nuclear and quasidiagonal.*
2.  *$A$  is  $*$ -isomorphic to an NF algebra.*

By replacing asymptotic multiplicativity with asymptotic order zero, we can drop "quasidiagonal."

### Theorem (CW)

*The following are equivalent for a separable unital  $C^*$ -algebra  $A$ :*

1.  *$A$  is nuclear.*
2. *There exists a generalized NF system  $(F_n, \rho_{m,n}, e_n)$  and an injective cp order zero map  $\psi : A \rightarrow F_\infty$  with  $\psi(A) = X$  and  $\psi(1_A) = e$ .*

Thanks!