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Part I: Inductive limits of C∗-algebras



Inductive limits of C∗-algebras

An inductive system of C∗-algebras consists of a sequence (An)n of
C∗-algebras together with connecting ∗-homomorphisms

A0
ρ1,0−−→ A1

ρ2,1−−→ A2 → . . . .

For each k ≥ 0, the quotient map π :
∏

n An →
∏

n An/
⊕

n An

induces a ∗-homomorphism ρk : Ak →
∏

n An/
⊕

n An by

ρk(a) := π(
(
ρn,k(a)

)
n>k

), ∀ a ∈ Ak .

The inductive limit of the system (An, ρm,n) is the C∗-algebra

A :=
⋃

k≥0 ρk(Ak) ⊂ ∏
n

An/
⊕
n

An.



Inductive limits of C∗-algebras

This construction has provided many interesting examples of
C∗-algebras:

Example

• Approximately Finite (AF) algebras
(inductive limits of finite dimensional C∗-algebras)

• Approximately Circle (AT) algebras
(inductive limits of direct sums of matrix algebras over C (T))

• Approximately Homogeneous (AH) algebras
(inductive limits of homogeneous C∗-algebras,
i.e., corners of matrix algebras over C (X ) for some compact
Hausdorff X .)



Inductive limits of C∗-algebras

It has also shed light on the structure of many naturally occurring
C∗-algebras:

Theorem
A simple, separable, unital C∗-algebra A fits into the Elliott
classification program (meaning it can be classified by its K-theory
and traces) if it is

• [Elliott] AF,

• [Elliott] AT with Real Rank Zero (i.e., As.a. = GL(A) ∩ As.a.)
([Elliot-Evans] This includes irrational rotation algebras), or

• [Dadarlat–Elliott–Gong] AH with Real Rank Zero and “slow
dimension growth.”



Generalized inductive limits

Working with these inductive systems, one realizes that
on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced
geneneralized inductive systems of C∗-algebras, where the
connecting maps only asymptotically behave like
∗-homomorphisms. They showed that the limits of such systems
form important classes of C∗-algebras.

Ignoring the full generality of their constructions, we focus on their
so-called NF systems.



NF systems

Definition
An NF system consists of a sequence (Fn)n of finite dimensional
C∗-algebras together with asymptotically multiplicative completely
positive contractive (cpc) maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . .

Asymptotically multiplicative means that for any k ≥ 0, x , y ∈ Fk ,
and ε > 0, there exists an M > k such that for all m > n > M,

‖ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)‖ < ε.

The inductive limit of an NF system is formed the same as before:⋃
k ρk(Fk) ⊂

∏
n Fn/

⊕
Fn where ρk : Fk →

∏
n Fn/

⊕
Fn are the

induced cpc maps.



NF Algebras

Since this quotient only cares about what happens asymptotically,
the limit is still a C∗-algebra, which we call an NF Algebra.

Theorem (BK)

A separable C∗-algebra A is NF iff it admits a cpc approximation
with asymptotically multiplicative maps, i.e., there exists a
sequence of finite dimensional C∗-algebras (Fn)n and cpc maps

A
ψn−→ Fn

ϕn−→ A so that for all a, b ∈ A,

‖ϕn ◦ ψn(a)− a‖ → 0 and

‖ψn(a)ψn(b)− ψn(ab)‖ → 0.

In particular, these C∗-algebras are nuclear, and we have an
approximately commutative diagram.

A A A A . . . A

F0 F1 F2 . . . X

id

ψ0

id

ψ1

id

ψ2

ψ1◦ϕ0

ϕ0 ϕ1

ψ2◦ϕ1

ϕ2



NF Algebras

Theorem (BK)

NF C∗-algebras are exactly the separable nuclear C∗-algebras
which are quasidiagonal.

Definition
A separable C∗-algebra A is quasidiagonal if it admits a sequence
of cpc maps ψn : A→ Fn which are

• asymptotically multiplicative (‖ψn(a)ψn(b)− ψn(ab)‖ → 0) &

• asymptotically isometric (‖a‖ = limn ‖ψn(a)‖).

But what if we just want to get at nuclear C∗-algebras?

To do so, we must relax the asymptotically multiplicative
assumption, but then the inductive limit fails to be an algebra.

We need to relax multiplicativity without losing the C∗-structure.



Part II: Order Zero Maps



Order Zero Maps

Definition
A cp map ψ : A→ B between C∗-algebras is called order zero if it
is orthogonality preserving:

ab = 0 =⇒ ψ(a)ψ(b) = 0, ∀ a, b ∈ A+.

Theorem (Winter-Zacharias)

Let A and B be C∗-algebras with A unital. A cp map ψ : A→ B is
order zero iff

ψ(a)ψ(b) = ψ(1A)ψ(ab), ∀ a, b ∈ A.

Remark
Note that if ψ(1A) = 1B , then ψ is a ∗-homomorphism.



Order Zero Maps

These are a natural step-down from ∗-homomorphisms, and they
actually retain a lot of the same nice properties.

Theorem (Wolf)

If ψ : A→ B is a cp order zero map from a unital C∗-algebra A,
then ψ(1A) ∈ ψ(A)′.

Proposition (WZ)

If ψ : A→ B is a cp order zero map, then so are all of its matrix
amplifications ψ(r) : Mr (A)→ Mr (B).

In other words, an order zero map is completely order zero.

Proposition

If ψ : A→ B is an injective cp order zero map, then
ψ−1(ψ(A) ∩ B+) = A+. Moreover, if a cp order zero map is
invertible (on its image), its inverse is automatically cp.



Images of order zero maps

A cp order zero map leaves an impression of its structure in its
image– even to the point that we can detect when a self-adjoint
subspace of a C∗-algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a
C∗-algebra out of the image outright.

In particular, for a cpc order zero map ψ : A→ B from a unital
C∗-algebra, setting X := ψ(A) and e := ψ(1A), we have the
following:

1. [W] e ∈ X ′ ∩ X

2. [WZ] X 2 := {xy : x , y ∈ X} = {ez : z ∈ X} =: eX , and

3. e is an order unit for X ⊂ B.



An order unit

Definition
Given a self-adjoint subspace X of a C∗-algebra B. We say a
positive element e ∈ X is an order unit for X if for each
x = x∗ ∈ X , there exists an R > 0 so that Re ≥ x .
We say e is a uniform order unit if ‖x‖e ≥ x for all x = x∗ ∈ X .

Example

• The unit of a unital C∗-algebra A is a uniform order unit for A.

• id(0,1] is a uniform order unit for Cid(0,1] ⊂ C0((0, 1]).

• id(0,1] ⊗ 1A is a uniform order unit for
id(0,1] ⊗ A ⊂ C0((0, 1])⊗ A.

• If ρ : A→ B is a cp map, then ρ(1A) is an order unit for ρ(A).
It is a uniform order unit when ρ is cp order zero and
isometric.



A C∗-structure

It turns out these three criteria are enough to define a
pre-C∗-structure on a self-adjoint subspace of a C∗-algebra.

Theorem (C.-Winter)

Let B be a C∗-algebra, X ⊂ B a self-adjoint subspace, and e ∈ B1
+

a distinguished element satisfying

1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. e is an order unit for X .

Then there is an associative bilinear map • : X × X → X satisfying

xy = e(x • y) ∀ x , y ∈ X

so that (X , •) is a ∗-algebra with unit e.
Moreover, there exists a pre-C∗-norm ‖ · ‖• on (X , •), and

X = X
‖·‖•

already when X = X
‖·‖B .



A C∗-structure

For a self-adjoint subspace X of a C∗-algebra B with distinguished
element e ∈ B1

+, we abbreviate the criteria that gave us a
pre-C∗-structure on X as follows:

(C∗)


1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. e is an order unit for X .

Whenever (X , e) satisfy (C∗), we can define multiplication
• : X × X → X and a pre-C∗-norm ‖ · ‖• on X .

We write X• := (X , •)‖·‖• for the completion.



Images of cpc order zero maps

For a self-adjoint X ⊂ B with distinguished e ∈ B1
+ so that

(X , e) ⊂ B satisfy (C∗), it turns out that the map

X• ⊇ X
idX−−→ X ⊂ B

extends to a cpc order zero map X• → B.

Theorem (CW)

The following are equivalent for a self-adjoint subspace X ⊂ B of a
C∗-algebra B with distinguished e ∈ B1

+.

a. There exists a unital C∗-algebra A and cpc order zero map
ψ : A→ B such that X = ψ(A) and e = ψ(1A).

b. (X , e) satisfies (C∗) and X = X
‖·‖•

(i.e., X = X• as sets).

Remark
For any unital C∗-algebra A with injective cp order zero map
ψ : A→ B with ψ(A) = X and ψ(1A) = e, the map
id−1

X ◦ ψ : A→ X• becomes a ∗-isomorphism.



Closed images of cpc order zero maps

One case where we always are guaranteed an injective cp order
zero map is when X is closed in B.

Theorem (CW)

The following are equivalent for a closed self-adjoint subspace
X ⊂ B of a C∗-algebra B with distinguished e ∈ B1

+.

a. There exists a unital C∗-algebra A and an injective cp order
zero map ψ : A→ B such that X = ψ(A) and e = ψ(1A).

b. (X , e) satisfies (C∗).

This comes from the fact that X = X
‖·‖•

when X ⊂ B is closed,
which means idX : X• → X ⊂ B is already a cpc order zero map,
which is a complete order isomorphism by virtue of being injective.



Part III: Generalized NF Systems



Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative”
requirement from the NF systems:

Definition
An NF system consists of a sequence (Fn)n of finite dimensional
C∗-algebras together with asymptotically multiplicative completely
positive contractive (cpc) maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . .

But the issue was that, without asymptotic multiplicativity, the
limit need not be a C∗-algebra.

Now we are equipped to overcome that hurdle.



Generalizing generalized inductive limits

Given a sequence (Fn)n of finite dimensional C∗-algebras together
cpc connecting maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . ,

we still have induced cpc maps ρk : Fk →
∏

n Fn/
⊕

n Fn =: F∞, and
we can still form the limit

X =
⋃
k

ρk(Fk) ⊂ F∞.

Though X may not be a C∗-algebra, if we can guarantee that
there some e ∈ (F∞)1

+ so that (X , e) satisfy (C∗), then it will be
completely order isomorphic to the C∗-algebra X• via the injective
cpc order zero map idX : X• → X ⊂ F∞.



Encoding (C∗)

The task is to encode (C∗) into a system

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . .

of cpc maps between finite dimensional C∗-algebras.

We want conditions on the system which guarantee that we have
an element e ∈ (F∞)1

+ so that the limit X together with e satisfy

(C∗)


1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. e is an order unit for X .



An approximately central order unit

To find a positive contraction e ∈ X ∩ X ′, we need a sequence
(en)n ∈

∏
n(Fn)1

+ that is

• asymptotically coherent, which guarantees that (ρn(en))n ⊂ X
is Cauchy, and

• asymptotically central, which guarantees that e := limn ρn(en)
commutes with X .

To ensure e is an order unit for X , we require that (en)n is an

• asymptotic uniform order unit, which guarantees that
‖ρn(x)‖e ≥ ρn(x) for every n ≥ 0, x = x∗ ∈ Fn.

Under these three assumptions, we get a positive contraction
e ∈ X ′ ∩ X that is an order unit for X .

Let’s call such a sequence an asymptotically central order unit.



Asymptotically order zero

With a designated “unit,” we want our system to capture the
unital definition of order zero (ψ(a)ψ(b) = ψ(1)ψ(ab) ∀ a, b ∈ A),
which translates to X 2 = eX .

We arrange for this by requiring that our system be

• asymptotically order zero with respect to (en)n.
This condition tells us how to build, for any k ≥ 0 and
x , y ∈ Fk , an element z ∈ X =

⋃
n ρn(Fn) so that

ez = ρk(x)ρk(y).

It turns out this is enough to get X 2 = eX .

Remark
Just as with order zero maps, if these maps are asymptotically
unital (i.e. ‖en − 1Fn‖ → 0), then the resulting sequence is
asymptotically multiplicative, and we land back in the NF setting.



Generalized NF systems
(Working title)

Definition (CW)

A generalized NF system (Fn, ρm,n, en) consists of a sequence
(Fn)n of finite dimensional C∗-algebras with cpc connecting maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . ,

that are asymptotically order zero with respect to an
asymptotically central order unit (en)n ∈

∏
n(Fn)1

+.

Example (BK, WZ, Brown-Carrión-White, CW)

Any separable, unital, nuclear C∗-algebra A admits a cpc

approximation A
ψn−→ Fn

ϕn−→ A so that (Fn, ψm ◦ ... ◦ ϕn, ψn(1A))
forms a generalized NF system.



Generalized NF systems from cpc approximations

A cpc approximation A
ψn−→ Fn

ϕn−→ A of a unital C∗-algebra with
asymptotically order zero maps (ψn : A→ Fn)n(

i.e., ‖ψn(1A)ψn(ab)− ψn(a)ψn(b)‖ → 0, ∀ a, b ∈ A
)

induces a completely isometric cp order zero map ψ : A→ F∞:

A A A . . . A

F0 F1 F2 . . . F∞

id

ψ0

id

ψ1

id

ψ2
ψ

ϕ0 ϕ1 ϕ2

After passing to a subsystem, we can guarantee that
ψ(A) = lim

→
(Fn, ψm ◦ ... ◦ ϕn) =: X .

The fact that ψ is cpc order zero will imply that the system is
asymptotically order zero with respect to the asymptotically central
order unit (ψn(1A))n.



Generalized NF systems from cpc approximations

A cpc approximation A
ψn−→ Fn

ϕn−→ A of a unital C∗-algebra with
asymptotically order zero maps (ψn : A→ Fn)n(

i.e., ‖ψn(1A)ψn(ab)− ψn(a)ψn(b)‖ → 0, ∀ a, b ∈ A
)

induces a completely isometric cp order zero map ψ : A→ F∞:

A A A . . . A

F0 F1 F2 . . . X

id

ψ0

id

ψ1

id

ψ2
ψ

ψ1◦ϕ0

ϕ0 ϕ1

ψ2◦ϕ1

ϕ2

After passing to a subsystem, we can guarantee that
ψ(A) = lim

→
(Fn, ψm ◦ ... ◦ ϕn) =: X .

The fact that ψ is cpc order zero will imply that the system is
asymptotically order zero with respect to the asymptotically central
order unit (ψn(1A))n. ( ψ(1A) is the central order unit for X .)



Limits of generalized NF systems

By encoding (C∗) into our definition of generalized NF systems, we
have guaranteed that the inductive limit X ⊂ F∞ along with
e := limn ρn(en) satisfy (C∗).

Hence, we have the following.

Theorem (CW)

The inductive limit X of a generalized NF system is completely
order isomorphic to a unital C∗-algebra X• via an injective cpc
order zero map idX : X• → X ⊂ F∞.

Moreover, if A is a unital C∗-algebra and ψ : A→ F∞ is an
injective cpc order zero map with ψ(A) = X and ψ(1A) = e, then
A ' X•.



Limits of generalized NF systems from cpc approximations

Corollary (CW)

Let A be a separable, unital, nuclear C∗-algebra and

A
ψn−→ Fn

ϕn−→ A a cpc approximation so that
(Fn, ψm ◦ ... ◦ ϕn, ψn(1A)) forms a generalized NF system.
Then A is ∗-isomorphic to X•.

A A A . . . A

F0 F1 F2 . . . X

X•

id

ψ0

id

ψ1

id

ψ2
ψ

ψ1◦ϕ0

ϕ0 ϕ1

ψ2◦ϕ1

ϕ2

idX

Can we tell when the C∗-algebra X• associated
to a generalized NF system if nuclear?



CPAP for a generalized NF system?

X• X• X• . . .

X X X . . .

F0 F1 F2 . . .

idX

id

idX

id

idX

ρ1,0

ρ0 ρ1

ρ2,1

ρ2

Notice that id−1
X is cp, and so ϕn := id−1

X ◦ ρn are cpc.

Can we come up with the downwards maps to get a completely
positive approximation?

[Winter] If we assume the upwards maps are decomposable into a
direct sum of a bounded number of cpc order zero maps, yes.



CPAP for a generalized NF system?

X• X• X• . . .

F0 F1 F2 . . .

id id

ρ1,0

ϕ0 ϕ1

ρ1,2

ϕ2

Notice that id−1
X is cp, and so ϕn := id−1

X ◦ ρn are cpc.

Question
Can we come up with the downwards maps to get a completely
positive approximation?

[Winter] If we assume the upwards maps are decomposable into a
direct sum of a bounded number of cpc order zero maps, then yes.



Without downwards maps

It turns out that we still get nuclearity without the downwards
maps by invoking a “one-way CPAP.”

Theorem (Sato, Ozawa)

A C∗-algebra is nuclear iff there exists a net (ρλ : Fλ → A)λ∈Λ of
cpc maps from finite dimensional C∗-algebras such that the
induced cpc map∏

λ Fλ `∞(Λ,A)

∏
λ Fλ/

⊕
λ Fλ

`∞(Λ,A)/c0(Λ,A)

(ρλ)λ

Φ

satisfies A1 ⊂ Φ

((∏
λ Fλ⊕
λ Fλ

)1
)

.

Remark
The proof goes by showing that A∗∗ is hyperfinite, not by
constructing the downwards maps.



Nuclear C∗-algebras from limits of generalized NF systems

Theorem (CW)

The inductive limit X of a generalized NF system is completely
order isomorphic to a unital nuclear C∗-algebra X• via an injective
cp order zero map idX : X• → X ⊂ F∞.



Removing quasidiagonality

Recall Blackadar and Kirchberg’s characterization of NF algebras
as the separable nuclear quasidiagonal C∗-algebras:

Theorem (BK)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear and quasidiagonal.

2. A is ∗-isomorphic to an NF algebra.

By replacing asymptotic multiplicativity with asymptotic order
zero, we can drop “quasidiagonal.”

Theorem (CW)

The following are equivalent for a separable unital C∗-algebra A:

1. A is nuclear.

2. There exists a generalized NF system (Fn, ρm,n, en) and an
injective cp order zero map ψ : A→ F∞ with ψ(A) = X and
ψ(1A) = e.



Thanks!
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