TENSOR LECTURE 1

This is sourced heavily from Sections [2, 3.1,3.2,3.3,3.5] and the GOALS Lecture notes.

1. Algebraic Tensor products

Tensor products are an important construction in operator algebras. Generally, one should think of the
tensor product of two vector spaces as a sort of product of the spaces themselves. However, unlike direct
products, tensor products allow for more interaction between elements in the spaces.

Tensor products are already an important construction for vector spaces and algebras. So, we begin by
extracting a few important facts there before we add on any topological information. A fairly standard
practice is to use different notation for algebraic tensor products and tensor products with some extra
topological information. We adopt the convention of writing A ® B for the algebraic tensor product of two
(potentially Banach) algebras (i.e., just their tensor product as plain ’ol algebras) and A ® B when the
algebraic tensor product is completed with respect to some topology.

1.1 Tensor products of C-x-algebras We begin by considering C*-algebras as just complex *-
algebras. While tensor products are usually defined via a universal property with respect to bilinear maps
on direct products,

Definition 1.1. Let A and B be C-vector spaces. Their tensor product is a vector space A ® B, together
with a bilinear map © : A X B — A® B, such that A ® B is universal in the following sense:

For any C-vector space C and any bilinear map ¢ : A x B — C, there exists a unique bilinear map ¢ :
A® B — C so that ¢(a © b) = ¢(a,b) for alla € A and b € B.

we usually think of them in the following way:

Definition 1.2. Given *-algebras A and B, their (algebraic) tensor product A® B is the *-algebra consisting
of formal linear combinations of elements of the form a ® b for a € A and b € B such that the following
relations are satisfied for all a1,a9,a € A, by,ba,b € B, and A € C

(a1 +a2) ©b= (a1 ©®b) + (az ©b),
a® (by+b)=(a®@b)+ (a®bs), and
AMa®b)=(Aa) ©b=a® (\b),

where multiplication and adjoints are defined by
(a1 ® bl)(az ® bg) = (alag) ® (blbg) and
(a@b)=a"©b"

and extendend linearly.

Elements of the form a © b for a € A and b € B are called simple tensors. That is, A ® B is spanned by
its simple tensors.

Remark 1.3. Although A ® B is spanned by its simple tensors, it consists of many more elements. For
example, in general the element (a1 @ by) + (az @ be) cannot be written as a simple tensor a ® b. Note also
that if a =0 or b =10, then a ©b = 0.

Proposition 1.4. If {e;}icr is a basis for A and {e};};e is a basis for B, then {e; ® €} } (i jyerx. is a basis
for A® B.

Proposition 1.5. If {e;};cr is a basis for B and x € A® B, then there exists a unique finite set In C I and
{ai}iGIO C A so that x = Zielo a; © e;.
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Example 1.6. Let A be a C-vector space and fix m,n € N. Recall that {Ei,j: 1<i<m,1<j<n}is
a basts for My (C), where E; ; is the matriz with a 1 in the (i,7) entry and zeros elsewhere. The previous
proposition therefore implies that every element of A ® M, (C) can be written as

§ aij © B ;.
1<i,j<n

It is helpful to think of the elementary tensor a; ; © E; ; as an n x n matric with the vector a; ; in the (i,7)
entry and zeros elsewhere. From this perspective, the above element becomes

Y. a4, 0FE; =

1<ij<n

i1 - Aln

Gp1  + Ann
That is, we can think of A ® M,(C) as M, (A): the n X n matrices with entries in A:
Mn(A) = {[aij]lgiﬁjgn DA € A,l <i,5< TL} (11)

The wvector space operations on M, (A) are then determined by the entrywise operations from A. When
A is a (*-)algebra, this also comes with a natural multiplication (and involution where [a; ;]* = [a},] for
all [a; ;] € M, (A)). We will usually suppress the usual subscripts on the matrices, i.e. we write [a;;] for
[aijli<ij<n (Sometimes also [a;j]ij ).

Exercise 1. Let A be any C*-algebra, 1 < n < oo, and let E; ; denote the matriz units on M, (C) (i.e.

the matrices with 1 in the i,j coordinate and O elsewhere). Define a map m : M, (A) — M,(C) ® A by

m([ai;]) = 227 ;=1 Bij © aij. Show that this is an algebraic x-isomorphism.

Example 1.7. Form,n > 1, we have M,,(C)®M,,(C) = My, (C). For A = [a;;] € M, (C) and B € M,,(C),

the matriz array for A® B € B(C? ® C?), called the Kronecker product is

auB ce alnB

AeB=| 1 .

amB ... ap,B

Exercise 2. Verify the following identifications for *-algebras A and B with B unital.
A~AGC~AGClgC AG®B.

Just as we take tensor products of linear spaces, we can take tensor products of linear maps.! The
following is more of a proposition/ definition; existence and uniqueness of these maps come from the above
universal property.

Proposition 1.8. Suppose Ai1As, B1, Bo, B are x-algebras and ¢; : A; — B;, i = 1,2 and ¢; : A; — B,
i =1,2 are linear maps.
(1) There is a unique linear map
$1 O ¢2: A1 © Az = By © Ba,
called the tensor product of ¢1 and ¢a, so that g1 ® p2(a®b) = ¢1(a) ® ¢2(b) for alla € Ay, b € As.
(2) There exists a unique linear map
1 X g A © A2 = B,
called the product of 11 and s, so that Y1 X a(a ® b) = ¥1(a)ha(b) for alla € Ay, b € As.
Moreover:

(1) If ¢; : A; — By, i = 1,2 are *-homomorphisms, then ¢1 ® ¢o is a *-homomorphism; and
(2) If; : A; = B, i = 1,2 are *-homomorphisms, 11 Xy is a x-homomorphism provided that the ranges
1(A1) and 2 (As) commute in B, i.e. for each ay € Ay and ag € Aa, ¥1(a1)2(az) = 2(a2)r(ay).

LFor those categorically inclined, tensors play well with linear categories and act like “multiplication” for objects/ morphisms.
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Example 1.9. Let ¢: A — B be a linear map between C-vector spaces and fix m,n € N. If we let I, denote
the identity map on M, (C), then ¢ © I,,: A® M, (C) —» B ® M,(C). In particular, we have

o0l | Y ayOBy|= ) #lai)© By

1<i,5<n 1<i,j<n
If we identify A ® M, (C) = M, (A) and B® M, (C) = M, (B) as in Example 1.6, then
aiyl 0 Qinp dlars) -+ dlain)
PO In ST = : . ;
An,1 "+ Gpn d’(an,l) T ¢(an,n)

That is, ¢ © I, is simply the map that applies ¢ to each entry. This map is called a matrix amplification of
¢ and is denoted by ¢ : M,,(A) — M, (B).

The tensor product of linear maps preserves both injectivity and exact sequences:

Proposition 1.10. Suppose A1, As, B1, Bo are C-vector spaces and ¢; : A; = B;, i = 1,2 are linear maps.
If ¢; and ¢o are injective. Then ¢1 ® o is also injective.

Proposition 1.11. Suppose J, A, B,C are C-vector spaces. If 0 — J = A 55 B — 0 is a short exact
sequence (i.e. v is injective, w is surjective, and ker(w) = «(J)), then so is

0= JoC 24, 400 ™4 poo 0.

1.2 Tensor products of Hilbert spaces If #; and H, are a pair of Hilbert spaces, the tensor
product of H; and Hs, denoted by Hi ® Hs, is defined as follows. Consider first the algebraic tensor
product

n
H1 O Hoy = Z@@’ﬂj:nEN, ngHl,’ﬂjEHz
j=1
with inner product
(&1 @1, & ©m2) = (1, 82) (M1, 1m2)-

H1 ® Ho is then defined as the completion of Hi ® Hy with respect to metric induced by this inner product.

If we want to emphasize that a simple tensor £ ® n lives in the completion H1 ® Ha, we will sometimes
write £ ® 1 instead of £ ® 7.

Exercise 3. Show that the norm in Hi ® Ha satisfies || @ n|| = [|€]|[n]]-

Exercise 4. Let 11 and Ho be Hilbert spaces with orthonormal bases (e;)icr and (fj)jes. Then {e; ®
fitajyerxg is an orthonormal basis for Hi @ Ha. Use this to show that If {e;}icr is a basis for A and
{€}}jes is a basis for B, a basis for A® B.

Hi ® Ho = fg(Jﬂ'll) = 52(1, 7'[2).
Exercise 5. Let H be a Hilbert space. Show that ¢*(I) @ H = (*(1,H).
Exercise 6. Let H be a Hilbert space and fit n € N. Show that H @ C* =2 H™.

1.3 Tensor Products of Bounded Operators on Hilbert Spaces Given operators x; € B(H;)
for i = 1,2, we have a natural algebraic tensor product mapping =1 ® x2 : H1 © Ha — H1 © Hs given on
simple tensors by

(21 ©22)( ©n) = 21 © T2
This extends linearly to a linear map Hi © Ho — H1 © Ho which is defined on sums of simple tensors by

1 @ Ty <Z ¢i(§© ﬁj)) = ¢jl@i&; © zam).
1

1
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The map 1 @ 2 extends to an operator in B(H; ® Hz) by the following proposition. To emphasise that
this extension is defined on H; ® Ha, we denote it as x1 ® x».

Proposition 1.12. Given Hilbert spaces Hy and Ha and operators x; € B(H;), i = 1,2, there is a unique
linear operator x1 ® xo € B(H1 @ Ha) such that

T @x2(§1 ©&2) = 1161 © 126

for all & € H;, i = 1,2, and moreover |1 ® za|| = ||z1]|||z2||-

Proof. First, we want to show that the operator x; ® x5 is bounded on Hi ® Ha, which means we can
extend it to a bounded operator on H; ® Ha. Assume for now that xo = 1y, and write x = x1. Let
Y1ei(& ©nj) € Hi © Ha. Using a Gram-Schmidt process, we may assume 7); are orthonormal (check).
Then we compute

2 2
ro 1, e om)| =D erg ol =0 cr&on, Yy crg; ony)
j=1 j=1 =1 j=1
= chzcg IRINUT Z|0J| l€5]1* < fl? Zlcgl &1
i=1 j=1

2
n

= |l2||? ZZ ¢i¢j (& &) mis )| = TP Z (& ©nj)

Then ||z ® 14, < ||z| on Hi © Ha, meaning it extends to an operator in B(’H1 ® Hz), denoted by = ® 14,,
with ||z ® 194, || < ||z||. Similarly, one shows that for any zo € B(Hs2), we have 1y, ® z2 € B(H1 ® Ha).

Now, for 1 € B(H1) and x5 € B(Hz), we compose (13, ® z2)(z1 ® 1y,) to get 1 @ z2 € B(H1 @ Haz)
with [lzy ® 2| < [l |[[|z2]| and

T1 @ @2(§1 ® &2) = 1182 © 3262

for all & ® & € Hy ® Ha. To show that, in fact, we have ||z1 ® zo|| = ||z1||||x2]|, we find, for any € > 0, unit
vectors & € H; with ||z;&|| > ||zi|| + € for ¢ = 1,2. Then, using Exercise 3, we have

21 @ 22|l = [[(21 ® 22) (&1 ® &) = |l21&1 ® w282 = [lea&all[|z282]l = (2]l + €)([|2]l + €).
Letting € — 0 yields the claimed equality. O

We will take for granted that taking tensor products of operators is well-behaved with respect to addition,
(scalar) multiplication, and adjoints.

In infinite dimensions, we do not have B(H1)©B(H2) = B(H1®Hz) (the former is no longer automatically
closed). What we can say is that B(H1) = B(H1) ® Cly, and B(H3) = Cly, ® B(Hz), and Proposition
1.12 gives a natural *~homomorphism

B(Hl) ® B(Hg) — B(H1 ® 7‘[2)

Proposition 1.13. For Hilbert spaces H1 and Hs, we define x-homomorphisms v; : B(H;) — B(H1 ®@H2) by
identifying B(H1) ~ B(H1) ® Cly, and B(Hz) ~ Cly, ® B(Hz2). These induce a product x-homomorphism
11 X g : B(H1) @ B(H2) = B(H1 ® Hz), which is injective.
Proof. Since B(H1) ~ B(H1) ® Cly, and B(Hsz) ~ Cly, ® B(Hz2) (Exercise: check) and B(H1) ® Cly,
and Cly, © B(H2) commute in B(H1 ® Hs) (Exercise: check), we have from Section 1.2 the product
*-homomorphism

B(H1) ® B(H2) — B(H1 ® Ha),
given by

Zmﬂ@yj'—)z:%@l?%z)l%l@yz Z%@yj
Jj=1 j=1

We just need to show that this map is injective, i.e. if the operator ijl z;®y; € B(H1®H2) is zero, then the
sum of elementary tensors Z;—;l z;Oy; € B(H1) ©B(H2) is also zero. By possibly re-writing the coefficients
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of the z;, we may assume that the operators {z;} are linearly independent. If 0 = 37, z;®y; € B(H1®H2),
then for all vectors &1,n1 € Hy and &3,12 € Ha, we have
ng ®Y;)(& @ &), (m @m)) =Y _(2;6 @ y;2,m @)
Jj=1
n n
Z x;61,m) (Y2, m2) = Z<(<yj§2a772>)xj£17771>-
Jj=1 Jj=1
Since this holds for all §1,71 € H; the operator 37, (y;€2,m2)x; € B(H1) is zero. Since we assumed the {x;}
are linearly independent, the coefficients (y;&2, 72) must all be 0. Again, since this holds for all &3, n2 € Ha,
it follows that each y; = 0 € B(#2), which finishes the proof. O

Example 1.14. Let H be a Hilbert space and fir n € N. Note that since M,(C) = B(C™), the previous
proposition implies that B(H) ® My, (C) embeds into B(H®C™), which is equal to B(H™) by Exercise 6. This
embedding is very natural when identify B(H) © M, (C) with M, (B(H)) via Example 1.6. Indeed, under this
identification we have

11 0 Tinm
E Ti; O By = e )
1<ij<n Tai c Tnm

and the element on the right naturally acts on vectors in H™ wvia the usual matriz action:

Tl ot Tig &1 > 155
: = : &,..., &, €H.
Tni 0 Tan &n > i1 Tngk;
In particular, this defines a bounded operator with
Tig o Tig 1/2
< | > lwagl?
Tui  Tpm 1<ij<n

s

(exercise: check this).
Exercise 7. Show that M, (B(H)) = B(H"™). [Hint: how would you do this for H = C?]

From the embedding B(H1) @ B(Hz2) — B(H1 ® Hz) we get tensor products of representations.
Proposition 1.15. Given two representations m; : A; — B(H;), i = 1,2, there is an induced representation
T Ome: Al © Ay — B(H1 ® Ha)

such that m © ma(a1 © ag) = m1(a1) ® ma(az) for all a; € A;, i =1,2.

We have discussed extending pairs of linear maps to tensor products, but what about restricting maps
on tensor products to the tensor factors? Given a #-homomorphism on an algebraic tensor product of C*-
algebras ¢ : A® B — C, when can we define restrictions ¢|4 : A — C and ¢|p : B — C?7 In general this is
not so easy. In the unital setting, there is a natural way to do this.

Exercise 8. Suppose A, B, and C are C*-algebras with A and B wunital and ¢ : A® B — C a *-
homomorphism. Then there exist x-homomorphisms ¢4 : A — C and ¢ : B — C with commuting ranges
such that ¢ = ¢4 X ¢p.

A little harder to prove is the following (without the assumption that A and B are unital). See [2, Theorem
3.6.2].

Theorem 1.16. Let A and B be C*-algebras and 7 : A® B — B(H) a nondegenerate x-homomorphism.
Then there exist nondegenerate representations wa : A — B(H) and np : B — B(H) so that m = 74 X 7p.

Exercise 9. How would you define the representations when Ay and As are unital? Given a representation
7w A © Ay — B(H), show that the restrictions m; : A; — B(H) have commuting images.



6 2 ALGEBRAIC TENSOR PRODUCTS

2. Tensor Products of C*-algebras

One of the most important constructions in C*-algebras is the tensor product. Given two C*-algebras A and
B, we form a C*-tensor product A ®, B by taking the %-algebraic tensor product A ® B and completing
with some C*-norm. In this section, we consider the two most prominent ones. This section is taken heavily
from the first half of [2, Chapter 3].

One word on notation. Because there is so much significance to the norm on a given tensor product,
we will denote algebraic tensor products by ® and tensor products that are also complete with respect to
a norm by ® (possibly with decoration to denote which norm). Sometimes ® is used in the literature to
denote an algebraic tensor product, and sometimes it is used to indicate the normed tensor product space
with the spatial tensor product norm Definition 2.4. Usually authors are good about warning you of this.

2.1 C*-norms on tensor products For C*-algebras A and B, A ® B is a *-algebra. In order to turn
it into a C*-algebra, we need to be able to define a C*-norm || - || on A ® B. With this, (A® B, || - ||) will be
a pre-C*-algebra, i.e. its completion is a C*-algebra. Much like the situation with groups, we are guaranteed
the following;:

C*-norms on algebraic tensor products of C*-algebras always exist;

there can be (very) many different C*-norms on a given algebraic tensor product of two C*-algebras;
but we know how to describe the largest;

and we have a nice canonical spatial norm (which unlike for groups is even the smallest!)?; and

it is extremely interesting to ask when the two coincide (and this is related to the notion of amenabil-
ity for groups and nuclearity for maps because math is beautiful).

Definition 2.1. For C*-algebras A and B, a cross norm on a A® B is a norm || - || such that for simple
tensors we have ||a @ b|| = ||al|||b]| for every a € A and b € B.

Example 2.2. We verified in Proposition 1.12 that for Ty € B(H1) and Ty € B(Hs), the norm on B(H1) ®
B(Hs) inherited from B(H; ® Hz) is a cross norm. In fact as a consequence of Takesaki’s theorem® (which
we will discuss more later in this section) every C*-norm on A® B is a cross norm. We will take this as a
fact as we proceed.

In Exercise 1, we saw that there is an algebraic *-isomorphism M, (C) ® A = M,,(A). The latter being a
C*-algebra with norm induced by the norm of A in the following sense:

Recall from Exercise 7 that M, (B(H)) = B(H") for any Hilbert space H. Now (using the Gelfand-
Naimark Theorem), we faithfully represent A on some Hilbert space H with an injective *-homomorphism
7 : A — B(H). This induces a *-homomorphism 7(") : M,,(A) — M,,(B(H)) = B(H™), which is also injective
(check). Then we can define a norm on M,,(A) by |[[a;;]|| := |7 ([ai;])|| (injectivity implies this is a norm
and not just a semi-norm), which will satisfy the C*-identity (because (7(™)~1 : 7(") (M, (A)) = M, (A) is
a *-homomorphism).

Now pulling back the norm along this *-isomorphism gives a C*-norm on M, (C) ® A (i.e. ||[Aj] ®al =
[I[Aijall|). Moreover, M, (C) ® A is already complete with respect to this norm, which means it is a C*-
algebra. Hence any other C*-norm we define on M,,(A) agrees with this norm.” That means we have proved
the following proposition.

Proposition 2.3. Let A be a C*-algebra and 1 < n < co. Then there is a unique C*-norm on the algebraic
tensor product M, (C) ® A, which comes from the x-isomorphism M, (C) ® A = M, (A). Hence we write
M, (C) ® A.

2This is a deep theorem due to Takesaki.
3Full disclosure, using this theorem is wayyyy overkill. A functional calculus argument could prove this, (see [2, Lemma
3.4.10]) but this section is already long enough.

4Recall that this follows from the fact that the norm on a C*-algebra is completely determined by its algebraic structure:
el = (lz*2|)!/? = (r(z*z))*/2.
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This identification also introduces very convenient notation, e.g. for the diagonal matrix in M, (A) with
a € A down the diagonal:
a 0 ... 0

I, ®a < “

0 ... ... a
For general C*-algebras A and B, it should not be taken for granted that a C*-norm exists at all on A® B.
However, it turns out the two most natural candidates both yield C*-norms.
The first is the spatial norm, i.e. the norm inherited as a subspace of bounded operators on a tensor

product of Hilbert spaces. Recall that as a consequence of the GNS construction, every C*-algebra has at
least one faithful representation on some Hilbert space.

Definition 2.4 (Spatial Norm). Let m; : A; — B(H;) be faithful representations. The spatial norm on

A1 ® Ay is
HZ“iGbi = HZM(%)@@(@)

We will explain the || - ||min notation later with Takesaki’s theorem.

‘B(H1®H2) '

min

Exercise 10. Check that || - ||min S @ semi-norm satisfying the C*-identity.
Proposition 2.5. The semi-norm || - ||lmin i @ norm, i.e. for each © € A; ® As, if ||Z||min = 0, then z = 0.

Proof. Let m; : A; — B(H;) be faithful representations. Then the algebraic tensor product map 7 ©
ma 1 A1 © Ay — B(H1) ® B(H2) is injective. By Proposition 1.13, we can view B(H1) ® B(H3) as a -
subalgebra of B(H; ® Hs), and consequently have m © 7o : A1 ® Ay — B(H1 ® Hs) injective. Then for any
T = Z?:l a; ®@b; € Ay ® Ao, if Hx”min =0, then

0= [|zllmin = 1| Y_ m1(as) @ ma(bs)|| = |[(m © m2) ()]
i=1
which by injectivity means z = 0. O

Hence || - ||min 18 @ norm, and we can define the C*-algebra
A@B=A0B" "

It is sometimes denoted A ®@min B, but we choose the undecorated notation to match the literature. In most
cases this the unofficial “default” norm to take on a tensor product of C*-algebras.’

For a sense of perspective, dropping the representation notation, we view A; C B(H1) and Ay C B(Ha2).
Then there is a natural way to stick them into a common C*-algebra, i.e. B(H1 ® Ha), from whence they
can inherit the C*-norm, i.e. A1 ® A is the closure of the x-subalgebra A; ® Ay C B(H1 ® Ha).

However, the norm was defined with an arbitrary choice of faithful representations. Fortunately, the value
of the norm is independent of that choice.

Proposition 2.6. Given faithful representations m; : A; — B(H;) and 7} : A; — B(H}), then the minimal
tensor norms || - |lmin and || - ||, defined by each pair of faithful representations agree.

The proof is nice to see because it highlights two useful techniques. The first, yet again, is approximate
identities. The second is the fact that there is only one C*-norm on M,,(B) for any C*-algebra B.

In our proof, we limit ourselves to the countable setting to avoid the extra notation involved with nets.

Proof. By symmetry, it suffices to prove the case where H; = H} and m; = 7.

We first consider the case where A; = M,,(C) for some n. Since both || - ||min and || - ||
by Proposition 2.3, for every x = > 1" T; ® a; € M,,(C) ® A,
n

Zﬂl(Ti) ® ma(a;)

=1

!/
min

are C*-norms,

n

> m(Ty) ©mh(as)

i=1

(2.1)

!
= [[2]lmin = [|2][min =

5For groups, it’s the other way around and the maximal C*-completion of the group algebra is often the undecorated one.
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Now, for the general separable case, take an increasing net of finite-rank projections P, < P, < ... in
B(H;1) where the rank of P, is n and such that ||P,{ —&|| — 0 for all £ € H; (i.e. P, converge in SOT to
13,). Then for every T € B(H1 ® Ha), (Py @ 131,)T (P, ® 13,) converges in *-SOT® to T', and so we have
(check)

1T = Sup (P @ 134,)T (Pn © 134,) |-

That means for any 2 =>_", a; ©b; € A1 ® As,

m

Z P,(a;) P, @ ma(b;)

[/l min = sup
n

Z P,7(a;) P, @ h(b;)
im1

For n > 1, define a s-isomorphism ¢ : M,,(C) — P, B(H)P,. Since ¢ is a faithful representation of M,,(C),
by (2.1), we have

][nin = sup
n

m

Z P,(a;)Pp @ ma(b;)

i=1

P, az)Pn)) 0 772(bi)

@ 7y (bi) || -

Z
— Z Pom(a;)P,)) @ m(b;)
2.t

It follows that ||z||min = |||, -

min-*

So, given C*-algebras A; and A, and faithful nondegenerate representations m; : A; — B(#H,;), we complete
w1 ® o to a faithful representation

T Qo : A1 ®A2 — B(H1 ®H2)
There is another often useful description of the minimal tensor norm.

Proposition 2.7. For C*-algebras Ay and Az, and x = Z;’:l a; Obj € A1 © Ay,

12| min = sup{]| Zm(aj) ®@ma(b;)|| © m Ay = B(H;) (nondegenerate) representations}.
j=1

Proof. Let m; : A; — B(H;) be representations and o; : A; — B(H}) be faithful representations. Then
m @ o Ay — B(H; ®H,) is a faithful representation. Let P; € B(H; ® H}) be the compression to H; for
each i =1,2... O

Exercise 11. Finish the proof of Proposition 2.7. This is an example of a technique where one can dilate
a map to one with a desired property (e.g. faithfulness) and then cut down to the original map to draw the
desired conclusion.

Just as with groups, there is another natural norm which comes from taking all possible representations.

Definition 2.8 (Maximal Norm). Let A and B be C*-algebras. We define the mazimal C*-tensor norm on
AOGB by

|2l max = sup{||w(x)|| : 7 : A® B — B(H) a (nondegenerate) rep}
forallx € A® B.

6Sn — S in »-SOT if S, = S in SOT and S;; — S* in SOT.



2.1 C™*-norms on tensor products 9

The first question is if this is even finite; it is by Theorem 1.16. Indeed, given 7 : A ® B — B(H), with
restrictions 7|4 and 7|p, then we have for all simple tensors a ©b € A® B,
Im(a©b)|l = lIr|ala)ws®d)] < lI7|ala)[lx]z®)] < [allllb]l. < oo
Just as one argues for universal/ full group C*-algebras, this with the triangle inequality guarantees that
[|2|lmax < 0o for all z € A® B.

Exercise 12. Check that || - ||max @8 a semi-norm satisfying the C*-identity.

For any pair of faithful representations 7; : 4; — B(#H,;), we get a representation m = m @ g : A1 © Ay —
B(H1 ® Ha). It follows that for any x € A1 © As,
]l min = {7 (2)[| < [|2]|max-
So, for any x € A; ® As,
|Z||max = 0 = ||Z]|min = 0= 2 =0,
which means || - || max 18 @ norm. Hence we define the C*-algebra

7H”m1x
Al Qmax A2 = Al © A2 .
Remark 2.9. Note that by definition, the x-algebra A1 ® Az is a dense subalgebra in Ay @max Az and A1 R As.
Just as with groups, the maximal tensor product enjoys a universal property.

Proposition 2.10. If ¢ : Ay ©® Ay — C is a *-homomorphism, then there exists a unique *-homomorphism
A1 @max As = C, which extends ¢. In particular, any pair of *-homomorphisms ¢; : A; — C with commuting
ranges induces a unique x-homomorphism

¢1 X P21 AQRumax B — C.

Note that this is really just a statement about norms, and it is a theme we’ve seen before (e.g. universal/
full group C*-algebras). Let’s flesh out a more general idea that underlies both.

Suppose B and C are C*-algebras, By C B is a dense *-subalgebra, and 7 : By — C'is a *-homomorphism.
(Notice that, unless By = B, this means By is not a C*-algebra.) The only obstruction to extending 7 to a
s-homorphism on B is if 7 is not contractive on By, i.e. |7 (b)|| > ||b]| for some b € By. In other words, 7
extends to B iff 7 is contractive on By. The necessity is easy to see. Indeed, if m does extend to B, then
the C*-norm on B forces 7w to be contractive on all of B, including By. On the other hand, if 7 : By — C'
is a contractive x-homomorphism, then it is in particular bounded, which means it extends to a contractive
homomorphism 7 : B — C. Moreover, for any b € B with b,, € By converging to b, we have 7 (b,) — m(b)
and hence 7(b,)* — m(b)*. Then by uniqueness of limits, 7(b*) = w(b)* since

[[7(bn)" = m(0%)|| = [l (b},) — w(6%)[| — 0.
For the sake of reference, we record this in a proposition:

Proposition 2.11. Suppose B and C are C*-algebras, By C B is a dense x-subalgebra, and 7 : By — C is
a *-homomorphism. Then 7 extends to B iff m is contractive on By.

With that digression, the proof of proposition 2.10 is quite immediate.
Proof of Proposition 2.10. Take a faithful nondegenerate representation = : C — B(H). Then 7o ¢ :

Ay ® Ay — B(H) is a contractive x-homomorphism (with respect to the || - || max norm) and hence extends
to A ®max AQ. O
It follows from this that || - |max is the largest possible C*-norm on 4; ® A,.

Corollary 2.12. Given any C*-norm ||-|| on A1 ® Asg, there is a surjective x-homomorphism A; @max Az —
A G AQH.H extending the identity map on Ay ® As.

Proof. Suppose || - || is another C*-norm on A; ® As. Then the identity map A3 ® Ay — A; © Agl"” is a
*-homomorphism, which then extends to a *-homorphism

Al Omax A2 = A1 O Azll'H-
Since it is a *-homomorphism, its image is closed and contains the dense subset A; ® As, and so it is a

surjection. As a surjective x-homomorphism, it is contractive, and so ||z||max > ||z]| for all z € 41 ©@ A;. O
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Remark 2.13. Very often in the literature, the closure of A ® B with respect to an arbitrary tensor norm
is denoted by A ®, B where the norm is denoted by || - ||o-

It turns out that the spatial norm || - ||min ¢ the minimal C*-norm on A; ® A,. This is an important
theorem due to Takesaki whose proof involves some heavy work in extending states to tensor products. For
the sake of time, we will have to take this for granted. The proof is worked out in [2, Section 3].

Theorem 2.14 (Takesaki). The spatial norm || - ||min s the minimal C*-norm on Ay ® As. In other words,
given any C*-norm || - || on A1 © As, there are surjective x-homomorphisms

Al Qmax A2 > A1 0 Ay 7 — A1 ® Ay

extending the identity map
A1 ®A2 *)A1®A2 HAl(DAQ.

It follows that if the natural surjection A; ®pmax A2 — A1 ® As is injective, then A; ® Ay has a unique
tensor norm. This fact is often indicated by writing

A Omax A2 = A1 ® As.

Remark 2.15. It is important here that it is this natural surjection that is also injective, i.e. the one that
extends the identity map Ay © As.

We have been avoiding the non-unital elephant in the room. We relegate the proof to [2, Corollary 3.3.12].

Proposition 2.16. If A and B are C*-algebras with A non-unital, then any C*-norm on A © B can be
extended to a C*-norm on A ® B (meaning the norms agree on A® B C A® B). Similarly, when both A
and B are non-unital, any C*-norm can be extended to A® B.”

Exercise 13. For C*-algebras A and B, we have canonical’ isomorphisms AQ B~ B® A and A @max B =
B ®III&X A'

Remark 2.17 (Remark on tensors and commutivity). Given C*-algebras A; and Ay, an example of a
representation of Ay ® Ay — B(H) is the tensor product of two representations,

0100y A1 © Ay — B(Hl) @B(Hz) C B(Hl ®H2)

But in general, there can be many representations that are not of this form, i.e. for some x € A1 ® Ay, we
could have
[#]lmax = sup{[|m(z)[| : 7: A1 © A2 — B(H)}
> sup{Hm ® 7T2($)H DTGl A1 — B(Hl)}
On an philosophical level, this is a question about commutivity. Given C*-algebras A1 and As, is there any
context (= C*-algebra they can be simultaneously embedded into) where Ay and Ay commute but not as
tensors. Let’s try to flesh this out a little.

Given a representation w : Ay © Ag — B(H), the restrictions m; : A; — B(H) have commuting images
(Exercise 9). When m = 01 ® 09 : A1 © Ay — B(H1 ® H2), we have a much better idea of what the images
are and why they commute. In this case the restrictions are given for a; € A; by

7r1(a1) = 0'1(0,1) X 17.[1 and ’/TQ((IQ) = 17.[2 X 0'2((12).
Then we have

7r1(a1)7r2(a2) = (01((11)@1’;.[1) (17.[2@02(&2)) = 0'1(0,1)@0’2(&2) = (17{2®02(a2)) (0’1(0,1)@1’;.[1) = 71'2(@2)71’1(0,1).

Sometimes the maximum and minimum norms on a tensor product A® B do coincide, e.g., if A = M, (C).

"In general (i.e. when we don’t have A = Aor B=B, thisis a larger algebra than A/CT)/B

8i.e. This is another way of saying “natural”. In this setting, this means the maps extend the usual algebraic maps.
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Example 2.18. Let K denote the compact operators on some Hilbert space H and A any C*-algebra.

First we claim that FR(H) ® A is a dense *-subalgebra of K ® A with respect to any C*-norm on K ©® A.
Recall that that FR(H) is dense in K. Now, suppose S ©a € K® A and S; € FR(H) a sequence with
S; — 8. Recall that any C*-norm || - || on K ® A is a cross norm, and so for any C*-norm || - || on K © A,
we have

(S ©a)=(S; ©a)l = (5= 5;) @all =[S = Sjl[la]| = 0.

Using the triangle inequality, we can extend this to show that any x = ZT:1TJ ©a;j € KOA can be
approzimated in any C*-norm by sums of simple tensors of finite rank operators.

So if we know [|z|lmax = ||Z|lmin for any @ € FR(H) ® A, then it follows that the natural surjection
K Qmax A = K ® A is isometric and K is nuclear. Fiz an arbitrary x = 27;1 T; ®a; € FR(H) ® A,
and let 7 : K ® A — B(H) be a representation. Then there exists a projection P € B(H) of rank n < oo
such that T; = PT;P for all j, and x = Z;ﬂ:l PT;P ® aj. Hence x € PB(H)P ©® A. From Ezercise
7.41 from Day 1 Lectures, we have a x-isomorphism ¢ : M, (C) — PB(H)P, and hence a representation
7 =m0 (p®ida): M,(C) ® A— B(H).

Since we know M, (C)®@max A = M, (C)®min A, we know that for any faithful representations o1 : M, (C) —
B(H1) and 03 : A — B(Ha2),

I Zgl PT P)) 902(%)”B(H1®H2) = Z¢ (PT; P) ®aj||m1n

j=1
m

= \IZ¢ (PT;P) © ajllmax > 7' (Y ¢~ (PT;P) © a))|

j=1
= H?T(Z PTiP © aj)|| = [Im(2)].
j=1

In particular, this holds for the faithful representations o1 = idx o ¢ : M,,(C) - PB(H)P C K < B(H) and
any faithful representation oo of A. But then we have

[#/lmin = || ZldK ) © o2(a;) || Brans)

= IIZal H(PT;P)) © 02(a;) | Bua)

2 ||7T( )|-
Since m: K © A — B(H) was arbitrary, it follows that
|2/l min > [|Z]lmax

which finishes the proof.

2.2 Continuous linear maps on tensor products In Takesaki’s proof that || ||min is the smallest
C*-norm, a delicate and crucial part of the argument is showing that states extend to tensor products, i.e.
for ¢; € S(A;), &1 ® ¢ extends to a state on 47 © Ag”IH for any C*-norm || - || (mapping into C ® C = C).
Given a pair of *-homomorphisms ¢; : A; — B;, we have a x-homomorphism
1O P2 A © Ay — B O By
Il

defined on the dense *-subalgebra A1 ® As of A1 ® A,
Il

where ||| is any C*-norm. By Proposition 2.11, this

extends to a x-homomorphism on A; ® Ay " iff ¢1 ® ¢9 is contractive on sums of simple tensors. Naturally,
this depends on the norm we put on By ® By (e.g. if A; = B; and we give A; ® Ay the maximal norm and
B; ® By the minimal norm).

Let us see how this works with respect to the minimal tensor product norms.
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Corollary 2.19. For a pair of x-homomorphisms ¢; : A; — B, the algebraic tensor product ¢1 ® ¢ extends
to a x-homomorphism
¢1 ®min ¢2 : Al ®min A2 — Bl ®min B2~

Proof. We are charged with showing that ¢; ® ¢2 is continuous with respect to the topologies on A; ® As
and B; ® By induced by their respective || - ||min norms. We know that there exist faithful representations
7 0 A; — B(H{) and faithful representations 72 : B; — B(HP). So if z = Z?:l a; ©b; € Ay ©® Ay, the
fact that *-homomorphisms are norm-decreasing means that

12 Ay 0minae = 1) 71 (a) @ 75 (03)I| 2 1 7f ($1(a5)) © 77 (92(03)) | = 61 © $2(2) | B, @ i B2

j=1 j=1
Then we are done by Proposition 2.11. (Or alternatively using the fact that each 72¢; : A; — B(HP) is a
representation of A; and appealing to Proposition 2.7.) |

Exercise 14. Show that for a pair of x-homomorphisms ¢; : A; — B;, the algebraic tensor product ¢1 © ¢o
extends to a x-homomorphism on

¢1 ®max,ﬂ ¢2 : Al Omax A2 — Bl ®,8 B2
for any C*-tensor product By @3 By. Hint: faithfully represent By ®3 Bo C B(H). Then ¢1 O ¢s 1 A1 © Ay —
B(H) is a x-homomorphism, which extends to A1 @max Aa.
However, many maps that we want to work with (e.g. states) are not necessarily *-homomorphisms. Hence

it is important to understand which class of bounded linear maps extend to tensor products, in particular,
for which bounded linear maps ¢; : A; — B; does ¢1 ® ¢ extend to continuous linear maps

#1 Pmax 92 * A1 Omax A2 — B1 Qmax B2
and
$1 Pmin 2 © A1 @min A2 — B1 @min B2?
Let us consider an example where this fails.

Example 2.20. Consider K = K(¢%). It follows from Example 2.18 that the completion of K ® K under
any tensor norm can be identified with the completion of K ® K with respect to the norm on B((? ® (?)
(via the tensor product of faithful representations idx ® idx ). For each i,j, we define the rank one operator
P, j = (-,¢ej)ei. (Think of these as an infinite-dimensional version of the matriz units for M,,(C).) For each
n>1, define V,, e KQ K by

n
Vn = Z Pi,j ®Pj,i~
ij=1
Then V,, is a partial isometry. (Indeed, since P; ;P = 65, F; 1, we can compute that V;V,, = P,, © P,, where
P, is the rank n projection sending ej — e; for 1 < j <mn ande; — 0 for j >n.) So ||V,|| =1 for all n.
Now considering each T = [t;;] € K as an array, we let Tr : KK — K denote the transpose map, which is
gwen by Tr([t;;]) = [tji]. This is a linear x-preserving isometric map (since T* = [t;;]), and

Tr® 1}C(Vn) = Z €ji X €ji-

4,j=1

Now, consider the vector € =Y ";_, e, ® e. One computes

n n
ITr © Le(Va)éll = 11 D) lerej)ei @ (ex, e5)e]
i,j=1k=1
n

1D (ersex)e: @ (ex, ex)es]

=1 k=1

NE

I p_nlei @ ei)|| = [Ing]| = nli€]l

Il
-

i
In particular, this means that ||Tr © 1xc(Va)||
unbounded operator and hence not continuous.

v

n and hence ||Tr © 1| > n for all n € N. This is an
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So what kinds of bounded linear maps on C*-algebras yield continuous tensor product maps? Notice
that the above example is *-preserving, so that’s not enough. We have remarked several times that much of
the structure of the C*-algebra is preserved by positive elements. Perhaps we need to consider linear maps
¢ : A — B that send positive elements in A to positive elements in B7? But even that isn’t enough. It turns
out that the transpose map above does send positive elements to positive elements. So, what gives? This is
where we finally motivate the idea of completely positive maps.

Definition 2.21. A linear map ¢ : A — B between C*-algebras is positive if ¢(a) > 0 for all a € Ay.
completely positive if its matriz amplification

o™ M, (C)® A — M, (C)® B

is positive for all n > 1.

We can also define (completely) positive maps on operator subsystems of unital C*-algebras. Given a
unital C*-algebra A, an operator system (also known as operator subsystem) is a unital (closed) self-adjoint
subspace 14 € X C A. A linear map ¢ : X — B is (completely) positive if it satisfies the above defnitions
on elements in X.

We abbreviate completely positive as “c.p.”.

Remark 2.22. One can show that a c.p. map ¢ : X — B is completely bounded meaning sup,, [|¢™|| < cc.
In fact, it turns out sup,, ||o™ || = ||¢|| = ll¢(14)||. When it is contractive, we abbreviate it as “c.p.c.” (or
sometimes “c.c.p.”), and when it is unital (and hence contractive by the above), we write “u.c.p.”.

Here’s an important class of examples.

Example 2.23. Let 1) : A — B be a cp map between C*-algebras and b € B. Then the map ¢ := b* 1 (-)b :
A — B is linear and positive (exercise). It is moreover completely positive. Indeed, for each n > 1 and
positive element [a;;] € M, (A),
0 ... 0
b*¢(a11)b ... b*¢lain)d 0 : dlar1) .. dlain)
o™ ([ai;]) = : : =, S
b*¢(an1)b ... b*¢(ann)b : L o elany) o dlann)| | T T
o ... 0 b 0 ... 0 b
Observe (exercise) that when ||b]| < 1, ¢ is completely positive and contractive.
Example 2.24 (Tomiyama). Another example of a c.p.c. map is a conditional expectation.

The two biggest theorems for completely positive maps are Stinespring’s Dilation Theorem and Arveson’s
Extension Theorem. For now, we just state the later.

Theorem 2.25 (Arveson’s Extension Theorem). Let A be a unital C*-algebra with operator subsystem and
X C an operator subsystem. Then any c.p.c. map ¢ : X — B(H) extends to a c.p.c. map ¢ : A — B(H)
with @|x = .
Theorem 2.26. Let ¢; : A; — B; be linear cp maps. Then the algebraic tensor product map

D1 O¢2: A © Ay = By O By

extends to a linear cp map (which is then also bounded and hence continuous) map on both the mazimal and
minimal tensor products:

61 ® P2 : A1 ®@ Ay = By ® By
¢1 Qmax ¢2 :Al Qmax A2 — Bl Qmax BZ-
Moreover, we have ||¢1 @max d2| = [[¢1 @ b2 = [[¢1]ll|d2]|-

Remember that we have already proved this for *-homomorphisms. Stinespring’s Dilation theorem will
allow us to transfer this fact to cpc maps.

In full disclosure, we need a stronger version of this to prove the ®pax part of Theorem 2.26, so we
direct you to [2, Proposition 1.5.6] and its use in the proof of [2, Theorem 3.5.3]. But for the sake of seeing
Stinespring’s Theorem in action, let’s prove that the algebraic tensor product of cp maps extends to a cp
map between spatial tensor products.



14 2 TENSOR PRODUCTS OF C*-ALGEBRAS

Proof of Theorem 2.26 (for spatial tensor). Let Aj, As, By, By be C*-algebras and ¢; : A; — B; cp maps.
First, by taking faithful representations, it suffices to assume that B; C B(H;) for i = 1,2 (why?). Then
¢; + A; — B(H;) are cp maps, which have Stinespring dilations (m;, H},V;) for i = 1,2. Since these are
s-homomorphisms, 71 @ ma : A1 © As — B(H}) © B(H4) C B(H) ® H5) extends to A; ® As. Define the map
P1® ¢y A1 ® Ay — By ® By C B(Hi@?‘lé) by

$1 @ ¢a(x) = (V1 @ V2)"(m1 @ m2) (2) (V1 ® V2).
By Example 2.23, this is a ¢cp map. Moreover, for elementary tensors a1 ® as € A3 ® Ao, we have
$1 @ ¢2(a1 © az) = (V'mi(a1)V1) @ (Vy'ma(az)Va) = ¢1(a1) © ¢2(az),
which means (by linearity) that ¢1 ® ¢2|a,04, = ¢1 © ¢a. a
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