
TENSOR LECTURE 1

This is sourced heavily from Sections [2, 3.1,3.2,3.3,3.5] and the GOALS Lecture notes.

1. Algebraic Tensor products

Tensor products are an important construction in operator algebras. Generally, one should think of the
tensor product of two vector spaces as a sort of product of the spaces themselves. However, unlike direct
products, tensor products allow for more interaction between elements in the spaces.

Tensor products are already an important construction for vector spaces and algebras. So, we begin by
extracting a few important facts there before we add on any topological information. A fairly standard
practice is to use different notation for algebraic tensor products and tensor products with some extra
topological information. We adopt the convention of writing A⊙ B for the algebraic tensor product of two
(potentially Banach) algebras (i.e., just their tensor product as plain ’ol algebras) and A ⊗ B when the
algebraic tensor product is completed with respect to some topology.

1.1 Tensor products of C-∗-algebras We begin by considering C∗-algebras as just complex ∗-
algebras. While tensor products are usually defined via a universal property with respect to bilinear maps
on direct products,

Definition 1.1. Let A and B be C-vector spaces. Their tensor product is a vector space A⊙B, together
with a bilinear map ⊙ : A×B → A⊙B, such that A⊙B is universal in the following sense:
For any C-vector space C and any bilinear map ϕ : A × B → C, there exists a unique bilinear map ϕ̃ :
A⊙B → C so that ϕ̃(a⊙ b) = ϕ(a, b) for all a ∈ A and b ∈ B.

we usually think of them in the following way:

Definition 1.2. Given ∗-algebras A and B, their (algebraic) tensor product A⊙B is the ∗-algebra consisting
of formal linear combinations of elements of the form a ⊙ b for a ∈ A and b ∈ B such that the following
relations are satisfied for all a1, a2, a ∈ A, b1, b2, b ∈ B, and λ ∈ C

(a1 + a2)⊙ b = (a1 ⊙ b) + (a2 ⊙ b),

a⊙ (b1 + b2) = (a⊙ b1) + (a⊙ b2), and

λ(a⊙ b) = (λa)⊙ b = a⊙ (λb),

where multiplication and adjoints are defined by

(a1 ⊙ b1)(a2 ⊙ b2) = (a1a2)⊙ (b1b2) and

(a⊙ b)∗ = a∗ ⊙ b∗

and extendend linearly.

Elements of the form a⊙ b for a ∈ A and b ∈ B are called simple tensors. That is, A⊙ B is spanned by
its simple tensors.

Remark 1.3. Although A ⊙ B is spanned by its simple tensors, it consists of many more elements. For
example, in general the element (a1 ⊙ b1) + (a2 ⊙ b2) cannot be written as a simple tensor a⊙ b. Note also
that if a = 0 or b = 0, then a⊙ b = 0.

Proposition 1.4. If {ei}i∈I is a basis for A and {e′j}j∈J is a basis for B, then {ei ⊙ e′j}(i,j)∈I×J is a basis
for A⊙B.

Proposition 1.5. If {ei}i∈I is a basis for B and x ∈ A⊙B, then there exists a unique finite set I0 ⊂ I and
{ai}i∈I0 ⊂ A so that x =

∑
i∈I0

ai ⊙ ei.
1
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Example 1.6. Let A be a C-vector space and fix m,n ∈ N. Recall that {Ei,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is
a basis for Mn(C), where Ei,j is the matrix with a 1 in the (i, j) entry and zeros elsewhere. The previous
proposition therefore implies that every element of A⊙Mn(C) can be written as∑

1≤i,j≤n

ai,j ⊙ Ei,j .

It is helpful to think of the elementary tensor ai,j ⊙Ei,j as an n× n matrix with the vector ai,j in the (i, j)
entry and zeros elsewhere. From this perspective, the above element becomes

∑
1≤i,j≤n

ai,j ⊙ Ei,j =

 a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 .

That is, we can think of A⊙Mn(C) as Mn(A): the n× n matrices with entries in A:

Mn(A) := {[aij ]1≤i,j≤n : aij ∈ A, 1 ≤ i, j ≤ n} (1.1)

The vector space operations on Mn(A) are then determined by the entrywise operations from A. When
A is a (∗-)algebra, this also comes with a natural multiplication (and involution where [ai,j ]

∗ = [a∗j,i] for
all [ai,j ] ∈ Mn(A)). We will usually suppress the usual subscripts on the matrices, i.e. we write [aij ] for
[aij ]1≤i,j≤n (sometimes also [aij ]ij).

Exercise 1. Let A be any C∗-algebra, 1 ≤ n < ∞, and let Ei,j denote the matrix units on Mn(C) (i.e.
the matrices with 1 in the i, j coordinate and 0 elsewhere). Define a map π : Mn(A) → Mn(C) ⊙ A by
π([ai,j ]) =

∑n
i,j=1Ei,j ⊙ aij. Show that this is an algebraic ∗-isomorphism.

Example 1.7. For m,n ≥ 1, we haveMn(C)⊙Mm(C) ∼=Mnm(C). For A = [aij ] ∈Mn(C) and B ∈Mm(C),
the matrix array for A⊙B ∈ B(C2 ⊗ C3), called the Kronecker product is

A⊗B =

a11B . . . a1nB
...

. . .
...

an1B . . . annB


Exercise 2. Verify the following identifications for ∗-algebras A and B with B unital.

A ≃ A⊙ C ≃ A⊙ C1B ⊂ A⊙B.

Just as we take tensor products of linear spaces, we can take tensor products of linear maps.1 The
following is more of a proposition/ definition; existence and uniqueness of these maps come from the above
universal property.

Proposition 1.8. Suppose A1A2, B1, B2, B are ∗-algebras and ϕi : Ai → Bi, i = 1, 2 and ψi : Ai → B,
i = 1, 2 are linear maps.

(1) There is a unique linear map

ϕ1 ⊙ ϕ2 : A1 ⊙A2 → B1 ⊙B2,

called the tensor product of ϕ1 and ϕ2, so that ϕ1⊙ϕ2(a⊙ b) = ϕ1(a)⊙ϕ2(b) for all a ∈ A1, b ∈ A2.
(2) There exists a unique linear map

ψ1 × ψ2 : A1 ⊙A2 → B,

called the product of ψ1 and ψ2, so that ψ1 × ψ2(a⊙ b) = ψ1(a)ψ2(b) for all a ∈ A1, b ∈ A2.

Moreover:

(1) If ϕi : Ai → Bi, i = 1, 2 are ∗-homomorphisms, then ϕ1 ⊙ ϕ2 is a ∗-homomorphism; and
(2) If ψi : Ai → B, i = 1, 2 are ∗-homomorphisms, ψ1×ψ2 is a ∗-homomorphism provided that the ranges

ψ1(A1) and ψ2(A2) commute in B, i.e. for each a1 ∈ A1 and a2 ∈ A2, ψ1(a1)ψ2(a2) = ψ2(a2)ψ1(a1).

1For those categorically inclined, tensors play well with linear categories and act like “multiplication” for objects/ morphisms.
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Example 1.9. Let ϕ : A→ B be a linear map between C-vector spaces and fix m,n ∈ N. If we let In denote
the identity map on Mn(C), then ϕ⊙ In : A⊙Mn(C) → B ⊙Mn(C). In particular, we have

ϕ⊗ In

 ∑
1≤i,j≤n

ai,j ⊙ Ei,j

 =
∑

1≤i,j≤n

ϕ(ai,j)⊙ Ei,j .

If we identify A⊙Mn(C) ∼=Mn(A) and B ⊙Mn(C) ∼=Mn(B) as in Example 1.6, then

ϕ⊙ In

 a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 =

 ϕ(a1,1) · · · ϕ(a1,n)
...

. . .
...

ϕ(an,1) · · · ϕ(an,n)

 .

That is, ϕ⊙ In is simply the map that applies ϕ to each entry. This map is called a matrix amplification of
ϕ and is denoted by ϕ(n) : Mn(A) → Mn(B).

The tensor product of linear maps preserves both injectivity and exact sequences:

Proposition 1.10. Suppose A1, A2, B1, B2 are C-vector spaces and ϕi : Ai → Bi, i = 1, 2 are linear maps.
If ϕi and ϕ2 are injective. Then ϕ1 ⊙ ϕ2 is also injective.

Proposition 1.11. Suppose J,A,B,C are C-vector spaces. If 0 → J
ι−→ A

π−→ B → 0 is a short exact
sequence (i.e. ι is injective, π is surjective, and ker(π) = ι(J)), then so is

0 → J ⊙ C
ι⊙idC−−−−→ A⊙ C

π⊙idC−−−−→ B ⊙ C → 0.

1.2 Tensor products of Hilbert spaces If H1 and H2 are a pair of Hilbert spaces, the tensor
product of H1 and H2, denoted by H1 ⊗ H2, is defined as follows. Consider first the algebraic tensor
product

H1 ⊙H2 =


n∑

j=1

ξj ⊙ ηj : n ∈ N, ξj ∈ H1, ηj ∈ H2


with inner product

⟨ξ1 ⊙ η1, ξ2 ⊙ η2⟩ := ⟨ξ1, ξ2⟩⟨η1, η2⟩.
H1 ⊗H2 is then defined as the completion of H1 ⊙H2 with respect to metric induced by this inner product.

If we want to emphasize that a simple tensor ξ ⊙ η lives in the completion H1 ⊗H2, we will sometimes
write ξ ⊗ η instead of ξ ⊙ η.

Exercise 3. Show that the norm in H1 ⊗H2 satisfies ∥ξ ⊙ η∥ = ∥ξ∥∥η∥.

Exercise 4. Let H1 and H2 be Hilbert spaces with orthonormal bases (ei)i∈I and (fj)j∈J . Then {ei ⊙
fj}(i,j)∈I×J is an orthonormal basis for H1 ⊗ H2. Use this to show that If {ei}i∈I is a basis for A and
{e′j}j∈J is a basis for B, a basis for A⊙B.

H1 ⊗H2
∼= ℓ2(J,H1) ∼= ℓ2(I,H2).

Exercise 5. Let H be a Hilbert space. Show that ℓ2(I)⊗H ∼= ℓ2(I,H).

Exercise 6. Let H be a Hilbert space and fix n ∈ N. Show that H⊗ Cn ∼= Hn.

1.3 Tensor Products of Bounded Operators on Hilbert Spaces Given operators xi ∈ B(Hi)
for i = 1, 2, we have a natural algebraic tensor product mapping x1 ⊙ x2 : H1 ⊙ H2 → H1 ⊙ H2 given on
simple tensors by

(x1 ⊙ x2)(ξ ⊙ η) = x1ξ ⊙ x2η.

This extends linearly to a linear map H1 ⊙H2 → H1 ⊙H2 which is defined on sums of simple tensors by

x1 ⊙ x2

(
n∑
1

cj(ξj ⊙ ηj)

)
=

n∑
1

cj(x1ξj ⊙ x2ηj).
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The map x1 ⊙ x2 extends to an operator in B(H1 ⊗ H2) by the following proposition. To emphasise that
this extension is defined on H1 ⊗H2, we denote it as x1 ⊗ x2.

Proposition 1.12. Given Hilbert spaces H1 and H2 and operators xi ∈ B(Hi), i = 1, 2, there is a unique
linear operator x1 ⊗ x2 ∈ B(H1 ⊗H2) such that

x1 ⊗ x2(ξ1 ⊙ ξ2) = x1ξ1 ⊙ x2ξ2

for all ξi ∈ Hi, i = 1, 2, and moreover ∥x1 ⊗ x2∥ = ∥x1∥∥x2∥.

Proof. First, we want to show that the operator x1 ⊙ x2 is bounded on H1 ⊙ H2, which means we can
extend it to a bounded operator on H1 ⊗ H2. Assume for now that x2 = 1H2

, and write x = x1. Let∑n
1 cj(ξj ⊙ ηj) ∈ H1 ⊙ H2. Using a Gram-Schmidt process, we may assume ηj are orthonormal (check).

Then we compute∥∥∥∥∥∥x⊙ 1H2
(

n∑
j=1

cj(ξj ⊙ ηj))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=1

cjxξj ⊙ ηj

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣⟨
n∑

i=1

cixξi ⊙ ηi,

n∑
j=1

cjxξj ⊙ ηj⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

cic̄j⟨xξi, xξj⟩⟨ηi, ηj⟩

∣∣∣∣∣∣ =
n∑

j=1

|cj |2∥xξj∥2 ≤ ∥x∥2
n∑

j=1

|cj |2∥ξj∥2

= ∥x∥2
∣∣∣∣∣∣

n∑
i=1

n∑
j=1

cic̄j⟨ξi, ξj⟩⟨ηi, ηj⟩

∣∣∣∣∣∣ = ∥T∥2
∥∥∥∥∥∥

n∑
j=1

cj(ξj ⊙ ηj)

∥∥∥∥∥∥
2

.

Then ∥x⊙ 1H2
∥ ≤ ∥x∥ on H1 ⊙H2, meaning it extends to an operator in B(H1 ⊗H2), denoted by x⊗ 1H2

,
with ∥x⊗ 1H2∥ ≤ ∥x∥. Similarly, one shows that for any x2 ∈ B(H2), we have 1H1 ⊗ x2 ∈ B(H1 ⊗H2).

Now, for x1 ∈ B(H1) and x2 ∈ B(H2), we compose (1H1 ⊗ x2)(x1 ⊗ 1H2) to get x1 ⊗ x2 ∈ B(H1 ⊗H2)
with ∥x1 ⊗ x2∥ ≤ ∥x1∥∥x2∥ and

x1 ⊗ x2(ξ1 ⊗ ξ2) = x1ξ2 ⊗ x2ξ2

for all ξ1 ⊗ ξ2 ∈ H1 ⊗H2. To show that, in fact, we have ∥x1 ⊗ x2∥ = ∥x1∥∥x2∥, we find, for any ε > 0, unit
vectors ξi ∈ Hi with ∥xiξi∥ ≥ ∥xi∥+ ϵ for i = 1, 2. Then, using Exercise 3, we have

∥x1 ⊗ x2∥ ≥ ∥(x1 ⊗ x2)(ξ1 ⊗ ξ2)∥ = ∥x1ξ1 ⊗ x2ξ2∥ = ∥x1ξ1∥∥x2ξ2∥ ≥ (∥x1∥+ ϵ)(∥x2∥+ ϵ).

Letting ϵ→ 0 yields the claimed equality. □

We will take for granted that taking tensor products of operators is well-behaved with respect to addition,
(scalar) multiplication, and adjoints.

In infinite dimensions, we do not have B(H1)⊙B(H2) = B(H1⊗H2) (the former is no longer automatically
closed). What we can say is that B(H1) ∼= B(H1) ⊗ C1H2 and B(H2) ∼= C1H1 ⊗ B(H2), and Proposition
1.12 gives a natural ∗-homomorphism

B(H1)⊙B(H2) → B(H1 ⊗H2).

Proposition 1.13. For Hilbert spaces H1 and H2, we define ∗-homomorphisms ιi : B(Hi) → B(H1⊗H2) by
identifying B(H1) ≃ B(H1)⊙C1H2 and B(H2) ≃ C1H1 ⊙B(H2). These induce a product ∗-homomorphism
ι1 × ι2 : B(H1)⊙B(H2) → B(H1 ⊗H2), which is injective.

Proof. Since B(H1) ≃ B(H1) ⊙ C1H2
and B(H2) ≃ C1H1

⊙ B(H2) (Exercise: check) and B(H1) ⊙ C1H2

and C1H1
⊙ B(H2) commute in B(H1 ⊗ H2) (Exercise: check), we have from Section 1.2 the product

∗-homomorphism

B(H1)⊙B(H2) → B(H1 ⊗H2),

given by
n∑

j=1

xj ⊙ yj 7→
n∑

j=1

(xj ⊗ 1H2)(1H1 ⊗ yi) =

n∑
j=1

xj ⊗ yj .

We just need to show that this map is injective, i.e. if the operator
∑n

j=1 xj⊗yj ∈ B(H1⊗H2) is zero, then the

sum of elementary tensors
∑n

j=1 xj⊙yj ∈ B(H1)⊙B(H2) is also zero. By possibly re-writing the coefficients
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of the xj , we may assume that the operators {xj} are linearly independent. If 0 =
∑n

j=1 xj⊗yj ∈ B(H1⊗H2),
then for all vectors ξ1, η1 ∈ H1 and ξ2, η2 ∈ H2, we have

0 = ⟨(
n∑

j=1

xj ⊗ yj)(ξ1 ⊗ ξ2), (η1 ⊗ η2)⟩ =
n∑

j=1

⟨xjξ1 ⊗ yjξ2, η1 ⊗ η2⟩

=

n∑
j=1

⟨xjξ1, η1⟩⟨yjξ2, η2⟩ =
n∑

j=1

⟨
(
⟨yjξ2, η2⟩

)
xjξ1, η1⟩.

Since this holds for all ξ1, η1 ∈ H1 the operator
∑n

j=1⟨yjξ2, η2⟩xj ∈ B(H1) is zero. Since we assumed the {xj}
are linearly independent, the coefficients ⟨yjξ2, η2⟩ must all be 0. Again, since this holds for all ξ2, η2 ∈ H2,
it follows that each yj = 0 ∈ B(H2), which finishes the proof. □

Example 1.14. Let H be a Hilbert space and fix n ∈ N. Note that since Mn(C) = B(Cn), the previous
proposition implies that B(H)⊙Mn(C) embeds into B(H⊗Cn), which is equal to B(Hn) by Exercise 6. This
embedding is very natural when identify B(H)⊙Mn(C) with Mn(B(H)) via Example 1.6. Indeed, under this
identification we have ∑

1≤i,j≤n

xi,j ⊙ Ei,j =

 x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

 ,

and the element on the right naturally acts on vectors in Hn via the usual matrix action: x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n


ξ1...
ξn

 =


∑n

j=1 x1jξj
...∑n

j=1 xnjξj

 ξ1, . . . , ξn ∈ H.

In particular, this defines a bounded operator with∥∥∥∥∥∥∥
 x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n


∥∥∥∥∥∥∥ ≤

 ∑
1≤i,j≤n

∥xi,j∥2
1/2

(exercise: check this).

Exercise 7. Show that Mn(B(H)) = B(Hn). [Hint: how would you do this for H = C?]

From the embedding B(H1)⊙B(H2) → B(H1 ⊗H2) we get tensor products of representations.

Proposition 1.15. Given two representations πi : Ai → B(Hi), i = 1, 2, there is an induced representation

π1 ⊙ π2 : A1 ⊙A2 → B(H1 ⊗H2)

such that π1 ⊙ π2(a1 ⊙ a2) = π1(a1)⊗ π2(a2) for all ai ∈ Ai, i = 1, 2.

We have discussed extending pairs of linear maps to tensor products, but what about restricting maps
on tensor products to the tensor factors? Given a ∗-homomorphism on an algebraic tensor product of C∗-
algebras ϕ : A⊙ B → C, when can we define restrictions ϕ|A : A → C and ϕ|B : B → C? In general this is
not so easy. In the unital setting, there is a natural way to do this.

Exercise 8. Suppose A,B, and C are C∗-algebras with A and B unital and ϕ : A ⊙ B → C a ∗-
homomorphism. Then there exist ∗-homomorphisms ϕA : A → C and ϕB : B → C with commuting ranges
such that ϕ = ϕA × ϕB.

A little harder to prove is the following (without the assumption that A and B are unital). See [2, Theorem
3.6.2].

Theorem 1.16. Let A and B be C∗-algebras and π : A ⊙ B → B(H) a nondegenerate ∗-homomorphism.
Then there exist nondegenerate representations πA : A→ B(H) and πB : B → B(H) so that π = πA × πB.

Exercise 9. How would you define the representations when A1 and A2 are unital? Given a representation
π : A1 ⊙A2 → B(H), show that the restrictions πi : Ai → B(H) have commuting images.
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2. Tensor Products of C∗-algebras

One of the most important constructions in C∗-algebras is the tensor product. Given two C∗-algebras A and
B, we form a C∗-tensor product A ⊗α B by taking the ∗-algebraic tensor product A ⊙ B and completing
with some C∗-norm. In this section, we consider the two most prominent ones. This section is taken heavily
from the first half of [2, Chapter 3].

One word on notation. Because there is so much significance to the norm on a given tensor product,
we will denote algebraic tensor products by ⊙ and tensor products that are also complete with respect to
a norm by ⊗ (possibly with decoration to denote which norm). Sometimes ⊗ is used in the literature to
denote an algebraic tensor product, and sometimes it is used to indicate the normed tensor product space
with the spatial tensor product norm Definition 2.4. Usually authors are good about warning you of this.

2.1 C∗-norms on tensor products For C∗-algebras A and B, A⊙B is a ∗-algebra. In order to turn
it into a C∗-algebra, we need to be able to define a C∗-norm ∥ · ∥ on A⊙B. With this, (A⊙B, ∥ · ∥) will be
a pre-C∗-algebra, i.e. its completion is a C∗-algebra. Much like the situation with groups, we are guaranteed
the following:

• C∗-norms on algebraic tensor products of C∗-algebras always exist;
• there can be (very) many different C∗-norms on a given algebraic tensor product of two C∗-algebras;
• but we know how to describe the largest;
• and we have a nice canonical spatial norm (which unlike for groups is even the smallest!)2; and
• it is extremely interesting to ask when the two coincide (and this is related to the notion of amenabil-
ity for groups and nuclearity for maps because math is beautiful).

Definition 2.1. For C∗-algebras A and B, a cross norm on a A ⊙ B is a norm ∥ · ∥ such that for simple
tensors we have ∥a⊗ b∥ = ∥a∥∥b∥ for every a ∈ A and b ∈ B.

Example 2.2. We verified in Proposition 1.12 that for T1 ∈ B(H1) and T2 ∈ B(H2), the norm on B(H1)⊙
B(H2) inherited from B(H1 ⊗H2) is a cross norm. In fact as a consequence of Takesaki’s theorem3 (which
we will discuss more later in this section) every C∗-norm on A⊙B is a cross norm. We will take this as a
fact as we proceed.

In Exercise 1, we saw that there is an algebraic ∗-isomorphism Mn(C)⊙ A ∼= Mn(A). The latter being a
C∗-algebra with norm induced by the norm of A in the following sense:

Recall from Exercise 7 that Mn(B(H)) = B(Hn) for any Hilbert space H. Now (using the Gelfand-
Naimark Theorem), we faithfully represent A on some Hilbert space H with an injective ∗-homomorphism
π : A→ B(H). This induces a ∗-homomorphism π(n) : Mn(A) → Mn(B(H)) = B(Hn), which is also injective
(check). Then we can define a norm on Mn(A) by ∥[aij ]∥ := ∥π(n)([aij ])∥ (injectivity implies this is a norm

and not just a semi-norm), which will satisfy the C∗-identity (because (π(n))−1 : π(n)(Mn(A)) → Mn(A) is
a ∗-homomorphism).

Now pulling back the norm along this ∗-isomorphism gives a C∗-norm on Mn(C) ⊙ A (i.e. ∥[λij ] ⊙ a∥ =
∥[λija]∥). Moreover, Mn(C) ⊙ A is already complete with respect to this norm, which means it is a C∗-
algebra. Hence any other C∗-norm we define on Mn(A) agrees with this norm.4 That means we have proved
the following proposition.

Proposition 2.3. Let A be a C∗-algebra and 1 ≤ n <∞. Then there is a unique C∗-norm on the algebraic
tensor product Mn(C) ⊙ A, which comes from the ∗-isomorphism Mn(C) ⊙ A ∼= Mn(A). Hence we write
Mn(C)⊗A.

2This is a deep theorem due to Takesaki.
3Full disclosure, using this theorem is wayyyy overkill. A functional calculus argument could prove this, (see [2, Lemma

3.4.10]) but this section is already long enough.
4Recall that this follows from the fact that the norm on a C∗-algebra is completely determined by its algebraic structure:

∥x∥ = (∥x∗x∥)1/2 = (r(x∗x))1/2.
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This identification also introduces very convenient notation, e.g. for the diagonal matrix in Mn(A) with
a ∈ A down the diagonal:

In ⊗ a ↔


a 0 . . . 0

0 a . . .
...

...
...

. . .
...

0 . . . . . . a

 .
For general C∗-algebras A and B, it should not be taken for granted that a C∗-norm exists at all on A⊙B.

However, it turns out the two most natural candidates both yield C∗-norms.
The first is the spatial norm, i.e. the norm inherited as a subspace of bounded operators on a tensor

product of Hilbert spaces. Recall that as a consequence of the GNS construction, every C∗-algebra has at
least one faithful representation on some Hilbert space.

Definition 2.4 (Spatial Norm). Let πi : Ai → B(Hi) be faithful representations. The spatial norm on
A1 ⊙A2 is ∥∥∥∑ ai ⊙ bi

∥∥∥
min

=
∥∥∥∑π1(ai)⊗ π2(bi)

∥∥∥
B(H1⊗H2)

.

We will explain the ∥ · ∥min notation later with Takesaki’s theorem.

Exercise 10. Check that ∥ · ∥min is a semi-norm satisfying the C∗-identity.

Proposition 2.5. The semi-norm ∥ · ∥min is a norm, i.e. for each x ∈ A1 ⊙A2, if ∥x∥min = 0, then x = 0.

Proof. Let πi : Ai → B(Hi) be faithful representations. Then the algebraic tensor product map π1 ⊙
π2 : A1 ⊙ A2 → B(H1) ⊙ B(H2) is injective. By Proposition 1.13, we can view B(H1) ⊙ B(H2) as a ∗-
subalgebra of B(H1 ⊗H2), and consequently have π1 ⊙ π2 : A1 ⊙A2 → B(H1 ⊗H2) injective. Then for any
x =

∑n
i=1 ai ⊙ bi ∈ A1 ⊙A2, if ∥x∥min = 0, then

0 = ∥x∥min = ∥
n∑

i=1

π1(ai)⊗ π2(bi)∥ = ∥(π1 ⊙ π2)(x)∥,

which by injectivity means x = 0. □

Hence ∥ · ∥min is a norm, and we can define the C∗-algebra

A⊗B := A⊙B
∥·∥min

.

It is sometimes denoted A⊗minB, but we choose the undecorated notation to match the literature. In most
cases this the unofficial “default” norm to take on a tensor product of C∗-algebras.5

For a sense of perspective, dropping the representation notation, we view A1 ⊂ B(H1) and A2 ⊂ B(H2).
Then there is a natural way to stick them into a common C∗-algebra, i.e. B(H1 ⊗H2), from whence they
can inherit the C∗-norm, i.e. A1 ⊗A2 is the closure of the ∗-subalgebra A1 ⊙A2 ⊂ B(H1 ⊗H2).

However, the norm was defined with an arbitrary choice of faithful representations. Fortunately, the value
of the norm is independent of that choice.

Proposition 2.6. Given faithful representations πi : Ai → B(Hi) and π′
i : Ai → B(H′

i), then the minimal
tensor norms ∥ · ∥min and ∥ · ∥′min defined by each pair of faithful representations agree.

The proof is nice to see because it highlights two useful techniques. The first, yet again, is approximate
identities. The second is the fact that there is only one C∗-norm on Mn(B) for any C∗-algebra B.

In our proof, we limit ourselves to the countable setting to avoid the extra notation involved with nets.

Proof. By symmetry, it suffices to prove the case where H1 = H′
1 and π1 = π′

1.
We first consider the case where A1 = Mn(C) for some n. Since both ∥ · ∥min and ∥ · ∥′min are C∗-norms,

by Proposition 2.3, for every x =
∑m

i=1 Ti ⊙ ai ∈ Mn(C)⊙A2,∥∥∥∥∥
n∑

i=1

π1(Ti)⊗ π2(ai)

∥∥∥∥∥ = ∥x∥min = ∥x∥′min =

∥∥∥∥∥
n∑

i=1

π1(Ti)⊗ π′
2(ai)

∥∥∥∥∥ . (2.1)

5For groups, it’s the other way around and the maximal C∗-completion of the group algebra is often the undecorated one.
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Now, for the general separable case, take an increasing net of finite-rank projections P1 ≤ P2 ≤ ... in
B(H1) where the rank of Pn is n and such that ∥Pnξ − ξ∥ → 0 for all ξ ∈ H1 (i.e. Pn converge in SOT to
1H1

). Then for every T ∈ B(H1 ⊗H2), (Pn ⊗ 1H2
)T (Pn ⊗ 1H2

) converges in ∗-SOT6 to T , and so we have
(check)

∥T∥ = sup
n

∥(Pn ⊗ 1H2
)T (Pn ⊗ 1H2

)∥.

That means for any x =
∑m

i=1 ai ⊙ bi ∈ A1 ⊙A2,

∥x∥min = sup
n

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π2(bi)

∥∥∥∥∥
∥x∥′min = sup

n

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π′
2(bi)

∥∥∥∥∥ .
For n ≥ 1, define a ∗-isomorphism ϕ : Mn(C) → PnB(H)Pn. Since ϕ is a faithful representation of Mn(C),
by (2.1), we have ∥∥∥∥∥

m∑
i=1

Pnπ(ai)Pn ⊗ π2(bi)

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

ϕ(ϕ−1(Pnπ(ai)Pn))⊗ π2(bi)

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

ϕ(ϕ−1(Pnπ(ai)Pn))⊗ π′
2(bi)

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π′
2(bi)

∥∥∥∥∥ .
It follows that ∥x∥min = ∥x∥′min. □

So, given C∗-algebras A1 and A2 and faithful nondegenerate representations πi : Ai → B(Hi), we complete
π1 ⊙ π2 to a faithful representation

π1 ⊗ π2 : A1 ⊗A2 → B(H1 ⊗H2).

There is another often useful description of the minimal tensor norm.

Proposition 2.7. For C∗-algebras A1 and A2, and x =
∑n

j=1 aj ⊙ bj ∈ A1 ⊙A2,

∥x∥min = sup{∥
n∑

j=1

π1(aj)⊗ π2(bj)∥ : πi : Ai → B(Hi) (nondegenerate) representations}.

Proof. Let πi : Ai → B(Hi) be representations and σi : Ai → B(H′
i) be faithful representations. Then

πi ⊕ σi : Ai → B(Hi ⊕H′
i) is a faithful representation. Let Pi ∈ B(Hi ⊕H′

i) be the compression to Hi for
each i = 1, 2... □

Exercise 11. Finish the proof of Proposition 2.7. This is an example of a technique where one can dilate
a map to one with a desired property (e.g. faithfulness) and then cut down to the original map to draw the
desired conclusion.

Just as with groups, there is another natural norm which comes from taking all possible representations.

Definition 2.8 (Maximal Norm). Let A and B be C∗-algebras. We define the maximal C∗-tensor norm on
A⊙B by

∥x∥max = sup{∥π(x)∥ : π : A⊙B → B(H) a (nondegenerate) rep}

for all x ∈ A⊙B.

6Sn → S in ∗-SOT if Sn → S in SOT and S∗
n → S∗ in SOT.
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The first question is if this is even finite; it is by Theorem 1.16. Indeed, given π : A ⊙ B → B(H), with
restrictions π|A and π|B , then we have for all simple tensors a⊙ b ∈ A⊙B,

∥π(a⊙ b)∥ = ∥π|A(a)π|B(b)∥ ≤ ∥π|A(a)∥∥π|B(b)∥ ≤ ∥a∥∥b∥. <∞.

Just as one argues for universal/ full group C∗-algebras, this with the triangle inequality guarantees that
∥x∥max <∞ for all x ∈ A⊙B.

Exercise 12. Check that ∥ · ∥max is a semi-norm satisfying the C∗-identity.

For any pair of faithful representations πi : Ai → B(Hi), we get a representation π = π1⊙π2 : A1⊙A2 →
B(H1 ⊗H2). It follows that for any x ∈ A1 ⊙A2,

∥x∥min = ∥π(x)∥ ≤ ∥x∥max.

So, for any x ∈ A1 ⊙A2,
∥x∥max = 0 ⇒ ∥x∥min = 0 ⇒ x = 0,

which means ∥ · ∥max is a norm. Hence we define the C∗-algebra

A1 ⊗max A2 := A1 ⊙A2
∥·∥max

.

Remark 2.9. Note that by definition, the ∗-algebra A1⊙A2 is a dense subalgebra in A1⊗maxA2 and A1⊗A2.

Just as with groups, the maximal tensor product enjoys a universal property.

Proposition 2.10. If ϕ : A1 ⊙A2 → C is a ∗-homomorphism, then there exists a unique ∗-homomorphism
A1⊗maxA2 → C, which extends ϕ. In particular, any pair of ∗-homomorphisms ϕi : Ai → C with commuting
ranges induces a unique ∗-homomorphism

ϕ1 × ϕ2 : A⊗max B → C.

Note that this is really just a statement about norms, and it is a theme we’ve seen before (e.g. universal/
full group C∗-algebras). Let’s flesh out a more general idea that underlies both.

Suppose B and C are C∗-algebras, B0 ⊂ B is a dense ∗-subalgebra, and π : B0 → C is a ∗-homomorphism.
(Notice that, unless B0 = B, this means B0 is not a C∗-algebra.) The only obstruction to extending π to a
∗-homorphism on B is if π is not contractive on B0, i.e. ∥π(b)∥ > ∥b∥ for some b ∈ B0. In other words, π
extends to B iff π is contractive on B0. The necessity is easy to see. Indeed, if π does extend to B, then
the C∗-norm on B forces π to be contractive on all of B, including B0. On the other hand, if π : B0 → C
is a contractive ∗-homomorphism, then it is in particular bounded, which means it extends to a contractive
homomorphism π : B → C. Moreover, for any b ∈ B with bn ∈ B0 converging to b, we have π(bn) → π(b)
and hence π(bn)

∗ → π(b)∗. Then by uniqueness of limits, π(b∗) = π(b)∗ since

∥π(bn)∗ − π(b∗)∥ = ∥π(b∗n)− π(b∗)∥ → 0.

For the sake of reference, we record this in a proposition:

Proposition 2.11. Suppose B and C are C∗-algebras, B0 ⊂ B is a dense ∗-subalgebra, and π : B0 → C is
a ∗-homomorphism. Then π extends to B iff π is contractive on B0.

With that digression, the proof of proposition 2.10 is quite immediate.

Proof of Proposition 2.10. Take a faithful nondegenerate representation π : C → B(H). Then π ◦ ϕ :
A1 ⊙ A2 → B(H) is a contractive ∗-homomorphism (with respect to the ∥ · ∥max norm) and hence extends
to A⊗max A2. □

It follows from this that ∥ · ∥max is the largest possible C∗-norm on A1 ⊙A2.

Corollary 2.12. Given any C∗-norm ∥ · ∥ on A1⊙A2, there is a surjective ∗-homomorphism A1⊗maxA2 →
A1 ⊙A2

∥·∥
extending the identity map on A1 ⊙A2.

Proof. Suppose ∥ · ∥ is another C∗-norm on A1 ⊙ A2. Then the identity map A1 ⊙ A2 → A1 ⊙A2
∥·∥

is a
∗-homomorphism, which then extends to a ∗-homorphism

A1 ⊗max A2 → A1 ⊙A2
∥·∥
.

Since it is a ∗-homomorphism, its image is closed and contains the dense subset A1 ⊙ A2, and so it is a
surjection. As a surjective ∗-homomorphism, it is contractive, and so ∥x∥max ≥ ∥x∥ for all x ∈ A1 ⊙A2. □
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Remark 2.13. Very often in the literature, the closure of A ⊙ B with respect to an arbitrary tensor norm
is denoted by A⊗α B where the norm is denoted by ∥ · ∥α.

It turns out that the spatial norm ∥ · ∥min is the minimal C∗-norm on A1 ⊙ A2. This is an important
theorem due to Takesaki whose proof involves some heavy work in extending states to tensor products. For
the sake of time, we will have to take this for granted. The proof is worked out in [2, Section 3].

Theorem 2.14 (Takesaki). The spatial norm ∥ · ∥min is the minimal C∗-norm on A1 ⊙A2. In other words,
given any C∗-norm ∥ · ∥ on A1 ⊙A2, there are surjective ∗-homomorphisms

A1 ⊗max A2 → A1 ⊙A2
∥·∥ → A1 ⊗A2

extending the identity map

A1 ⊙A2 → A1 ⊙A2 → A1 ⊙A2.

It follows that if the natural surjection A1 ⊗max A2 → A1 ⊗ A2 is injective, then A1 ⊙ A2 has a unique
tensor norm. This fact is often indicated by writing

A1 ⊗max A2 = A1 ⊗A2.

Remark 2.15. It is important here that it is this natural surjection that is also injective, i.e. the one that
extends the identity map A1 ⊙A2.

We have been avoiding the non-unital elephant in the room. We relegate the proof to [2, Corollary 3.3.12].

Proposition 2.16. If A and B are C∗-algebras with A non-unital, then any C∗-norm on A ⊙ B can be
extended to a C∗-norm on Ã ⊙ B (meaning the norms agree on A ⊙ B ⊂ Ã ⊙ B). Similarly, when both A

and B are non-unital, any C∗-norm can be extended to Ã⊙ B̃.7

Exercise 13. For C∗-algebras A and B, we have canonical8 isomorphisms A⊗B ∼= B⊗A and A⊗maxB ∼=
B ⊗max A.

Remark 2.17 (Remark on tensors and commutivity). Given C∗-algebras A1 and A1, an example of a
representation of A1 ⊙A2 → B(H) is the tensor product of two representations,

σ1 ⊙ σ2 : A1 ⊙A2 → B(H1)⊙B(H2) ⊂ B(H1 ⊗H2).

But in general, there can be many representations that are not of this form, i.e. for some x ∈ A1 ⊙ A2, we
could have

∥x∥max = sup{∥π(x)∥ : π : A1 ⊙A2 → B(H)}
> sup{∥π1 ⊙ π2(x)∥ : πi : Ai → B(Hi)}.

On an philosophical level, this is a question about commutivity. Given C∗-algebras A1 and A2, is there any
context (= C∗-algebra they can be simultaneously embedded into) where A1 and A2 commute but not as
tensors. Let’s try to flesh this out a little.

Given a representation π : A1 ⊙ A2 → B(H), the restrictions πi : Ai → B(H) have commuting images
(Exercise 9). When π = σ1 ⊙ σ2 : A1 ⊙ A2 → B(H1 ⊗H2), we have a much better idea of what the images
are and why they commute. In this case the restrictions are given for ai ∈ Ai by

π1(a1) = σ1(a1)⊗ 1H1
and π2(a2) = 1H2

⊗ σ2(a2).

Then we have

π1(a1)π2(a2) =
(
σ1(a1)⊗1H1

)(
1H2⊗σ2(a2)

)
= σ1(a1)⊗σ2(a2) =

(
1H2⊗σ2(a2)

)(
σ1(a1)⊗1H1

)
= π2(a2)π1(a1).

Sometimes the maximum and minimum norms on a tensor product A⊙B do coincide, e.g., if A = Mn(C).

7In general (i.e. when we don’t have A = Ã or B = B̃, this is a larger algebra than Ã⊙B.
8i.e. This is another way of saying “natural”. In this setting, this means the maps extend the usual algebraic maps.
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Example 2.18. Let K denote the compact operators on some Hilbert space H and A any C∗-algebra.
First we claim that FR(H)⊙A is a dense ∗-subalgebra of K⊙A with respect to any C∗-norm on K⊙A.

Recall that that FR(H) is dense in K. Now, suppose S ⊙ a ∈ K ⊙ A and Sj ∈ FR(H) a sequence with
Sj → S. Recall that any C∗-norm ∥ · ∥ on K ⊙ A is a cross norm, and so for any C∗-norm ∥ · ∥ on K ⊙ A,
we have

∥(S ⊙ a)− (Sj ⊙ a)∥ = ∥(S − Sj)⊙ a∥ = ∥S − Sj∥∥a∥ → 0.

Using the triangle inequality, we can extend this to show that any x =
∑m

j=1 Tj ⊙ aj ∈ K ⊙ A can be
approximated in any C∗-norm by sums of simple tensors of finite rank operators.

So if we know ∥x∥max = ∥x∥min for any x ∈ FR(H) ⊙ A, then it follows that the natural surjection
K ⊗max A → K ⊗ A is isometric and K is nuclear. Fix an arbitrary x =

∑m
j=1 Tj ⊙ aj ∈ FR(H) ⊙ A,

and let π : K ⊙ A → B(H) be a representation. Then there exists a projection P ∈ B(H) of rank n < ∞
such that Tj = PTjP for all j, and x =

∑m
j=1 PTjP ⊙ aj. Hence x ∈ PB(H)P ⊙ A. From Exercise

7.41 from Day 1 Lectures, we have a ∗-isomorphism ϕ : Mn(C) → PB(H)P , and hence a representation
π′ := π ◦ (ϕ⊙ idA) : Mn(C)⊙A→ B(H).

Since we know Mn(C)⊗maxA = Mn(C)⊗minA, we know that for any faithful representations σ1 : Mn(C) →
B(H1) and σ2 : A→ B(H2),

∥
m∑
j=1

σ1(ϕ
−1(PTjP ))⊙ σ2(aj)∥B(H1⊗H2) = ∥

m∑
j=1

ϕ−1(PTjP )⊙ aj∥min

= ∥
m∑
j=1

ϕ−1(PTjP )⊙ aj∥max ≥ ∥π′(

m∑
j=1

ϕ−1(PTjP )⊙ aj)∥

= ∥π(
m∑
j=1

PTjP ⊙ aj)∥ = ∥π(x)∥.

In particular, this holds for the faithful representations σ1 = idK ◦ ϕ : Mn(C) → PB(H)P ⊂ K ↪→ B(H) and
any faithful representation σ2 of A. But then we have

∥x∥min = ∥
m∑
j=1

idK(Tj)⊙ σ2(aj)∥B(H⊗H2)

= ∥
m∑
j=1

σ1(ϕ
−1(PTjP ))⊙ σ2(aj)∥B(H⊗H2)

≥ ∥π(x)∥.

Since π : K ⊙A→ B(H) was arbitrary, it follows that

∥x∥min ≥ ∥x∥max,

which finishes the proof.

2.2 Continuous linear maps on tensor products In Takesaki’s proof that ∥ · ∥min is the smallest
C∗-norm, a delicate and crucial part of the argument is showing that states extend to tensor products, i.e.

for ϕi ∈ S(Ai), ϕ1 ⊙ ϕ2 extends to a state on A1 ⊙A2
∥·∥

for any C∗-norm ∥ · ∥ (mapping into C⊗ C = C).
Given a pair of ∗-homomorphisms ϕi : Ai → Bi, we have a ∗-homomorphism

ϕ1 ⊙ ϕ2 : A1 ⊙A2 → B1 ⊙B2

defined on the dense ∗-subalgebra A1⊙A2 of A1 ⊙A2
∥·∥

where ∥·∥ is any C∗-norm. By Proposition 2.11, this

extends to a ∗-homomorphism on A1 ⊙A2
∥·∥

iff ϕ1 ⊙ ϕ2 is contractive on sums of simple tensors. Naturally,
this depends on the norm we put on B1 ⊙ B2 (e.g. if Ai = Bi and we give A1 ⊙ A2 the maximal norm and
B1 ⊙B2 the minimal norm).

Let us see how this works with respect to the minimal tensor product norms.
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Corollary 2.19. For a pair of ∗-homomorphisms ϕi : Ai → Bi, the algebraic tensor product ϕ1⊙ϕ2 extends
to a ∗-homomorphism

ϕ1 ⊗min ϕ2 : A1 ⊗min A2 → B1 ⊗min B2.

Proof. We are charged with showing that ϕ1 ⊙ ϕ2 is continuous with respect to the topologies on A1 ⊙ A2

and B1 ⊙ B2 induced by their respective ∥ · ∥min norms. We know that there exist faithful representations
πA
i : Ai → B(HA

i ) and faithful representations πB
i : Bi → B(HB

i ). So if x =
∑n

j=1 aj ⊙ bj ∈ A1 ⊙ A2, the
fact that ∗-homomorphisms are norm-decreasing means that

∥x∥A1⊗minA2
= ∥

n∑
j=1

πA
1 (aj)⊗ πA

2 (bj)∥ ≥ ∥
n∑

j=1

πB
1 (ϕ1(aj))⊗ πB

2 (ϕ2(bj))∥ = ∥ϕ1 ⊙ ϕ2(x)∥B1⊗minB2
.

Then we are done by Proposition 2.11. (Or alternatively using the fact that each πB
i ϕi : Ai → B(HB

i ) is a
representation of Ai and appealing to Proposition 2.7.) □

Exercise 14. Show that for a pair of ∗-homomorphisms ϕi : Ai → Bi, the algebraic tensor product ϕ1 ⊙ ϕ2
extends to a ∗-homomorphism on

ϕ1 ⊗max,β ϕ2 : A1 ⊗max A2 → B1 ⊗β B2

for any C∗-tensor product B1⊗βB2. Hint: faithfully represent B1⊗βB2 ⊂ B(H). Then ϕ1⊙ϕ2 : A1⊙A2 →
B(H) is a ∗-homomorphism, which extends to A1 ⊗max A2.

However, many maps that we want to work with (e.g. states) are not necessarily ∗-homomorphisms. Hence
it is important to understand which class of bounded linear maps extend to tensor products, in particular,
for which bounded linear maps ϕi : Ai → Bi does ϕ1 ⊙ ϕ2 extend to continuous linear maps

ϕ1 ⊗max ϕ2 : A1 ⊗max A2 → B1 ⊗max B2

and
ϕ1 ⊗min ϕ2 : A1 ⊗min A2 → B1 ⊗min B2?

Let us consider an example where this fails.

Example 2.20. Consider K = K(ℓ2). It follows from Example 2.18 that the completion of K ⊙ K under
any tensor norm can be identified with the completion of K ⊙ K with respect to the norm on B(ℓ2 ⊗ ℓ2)
(via the tensor product of faithful representations idK ⊙ idK). For each i, j, we define the rank one operator
Pi,j = ⟨·, ej⟩ei. (Think of these as an infinite-dimensional version of the matrix units for Mn(C).) For each
n ≥ 1, define Vn ∈ K ⊗K by

Vn :=

n∑
i,j=1

Pi,j ⊗ Pj,i.

Then Vn is a partial isometry. (Indeed, since Pi,jPl,k = δj,lPi,k, we can compute that V ∗
n Vn = Pn⊙Pn where

Pn is the rank n projection sending ej 7→ ej for 1 ≤ j ≤ n and ej 7→ 0 for j > n.) So ∥Vn∥ = 1 for all n.
Now considering each T = [tij ] ∈ K as an array, we let Tr : K → K denote the transpose map, which is

given by Tr([tij ]) = [tji]. This is a linear ∗-preserving isometric map (since T ∗ = [t̄ji]), and

Tr ⊙ 1K(Vn) =

n∑
i,j=1

eji ⊗ eji.

Now, consider the vector ξ =
∑n

k=1 ek ⊗ ek. One computes

∥Tr ⊙ 1K(Vn)ξ∥ = ∥
n∑

i,j=1

n∑
k=1

⟨ek, ej⟩ei ⊗ ⟨ek, ej⟩ei∥

= ∥
n∑

i=1

n∑
k=1

⟨ek, ek⟩ei ⊗ ⟨ek, ek⟩ei∥

= ∥
n∑

i=1

n(ei ⊗ ei)∥ = ∥nξ∥ = n∥ξ∥.

In particular, this means that ∥Tr ⊙ 1K(Vn)∥ ≥ n and hence ∥Tr ⊙ 1K∥ ≥ n for all n ∈ N. This is an
unbounded operator and hence not continuous.
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So what kinds of bounded linear maps on C∗-algebras yield continuous tensor product maps? Notice
that the above example is ∗-preserving, so that’s not enough. We have remarked several times that much of
the structure of the C∗-algebra is preserved by positive elements. Perhaps we need to consider linear maps
ϕ : A→ B that send positive elements in A to positive elements in B? But even that isn’t enough. It turns
out that the transpose map above does send positive elements to positive elements. So, what gives? This is
where we finally motivate the idea of completely positive maps.

Definition 2.21. A linear map ϕ : A → B between C∗-algebras is positive if ϕ(a) ≥ 0 for all a ∈ A+.
completely positive if its matrix amplification

ϕ(n) : Mn(C)⊗A→ Mn(C)⊗B

is positive for all n ≥ 1.
We can also define (completely) positive maps on operator subsystems of unital C∗-algebras. Given a

unital C∗-algebra A, an operator system (also known as operator subsystem) is a unital (closed) self-adjoint
subspace 1A ∈ X ⊂ A. A linear map ϕ : X → B is (completely) positive if it satisfies the above defnitions
on elements in X.

We abbreviate completely positive as “c.p.”.

Remark 2.22. One can show that a c.p. map φ : X → B is completely bounded meaning supn ∥φ(n)∥ <∞.
In fact, it turns out supn ∥φ(n)∥ = ∥φ∥ = ∥φ(1A)∥. When it is contractive, we abbreviate it as “c.p.c.” (or
sometimes “c.c.p.”), and when it is unital (and hence contractive by the above), we write “u.c.p.”.

Here’s an important class of examples.

Example 2.23. Let ψ : A → B be a cp map between C∗-algebras and b ∈ B. Then the map ϕ := b∗ψ(·)b :
A → B is linear and positive (exercise). It is moreover completely positive. Indeed, for each n ≥ 1 and
positive element [aij ] ∈ Mn(A),

ϕ(n)([aij ]) =

b
∗ϕ(a11)b . . . b∗ϕ(a1n)b

...
. . .

...
b∗ϕ(an1)b . . . b∗ϕ(ann)b

 =


b∗ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 b∗


ϕ(a11) . . . ϕ(a1n)

...
. . .

...
ϕ(an1) . . . ϕ(ann)



b 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 b

 .
Observe (exercise) that when ∥b∥ ≤ 1, ϕ is completely positive and contractive.

Example 2.24 (Tomiyama). Another example of a c.p.c. map is a conditional expectation.

The two biggest theorems for completely positive maps are Stinespring’s Dilation Theorem and Arveson’s
Extension Theorem. For now, we just state the later.

Theorem 2.25 (Arveson’s Extension Theorem). Let A be a unital C∗-algebra with operator subsystem and
X ⊂ an operator subsystem. Then any c.p.c. map φ : X → B(H) extends to a c.p.c. map φ̃ : A → B(H)
with φ̃|X = φ.

Theorem 2.26. Let ϕi : Ai → Bi be linear cp maps. Then the algebraic tensor product map

ϕ1 ⊙ ϕ2 : A1 ⊙A2 → B1 ⊙B2

extends to a linear cp map (which is then also bounded and hence continuous) map on both the maximal and
minimal tensor products:

ϕ1 ⊗ ϕ2 :A1 ⊗A2 → B1 ⊗B2

ϕ1 ⊗max ϕ2 :A1 ⊗max A2 → B1 ⊗max B2.

Moreover, we have ∥ϕ1 ⊗max ϕ2∥ = ∥ϕ1 ⊗ ϕ2∥ = ∥ϕ1∥∥ϕ2∥.

Remember that we have already proved this for ∗-homomorphisms. Stinespring’s Dilation theorem will
allow us to transfer this fact to cpc maps.

In full disclosure, we need a stronger version of this to prove the ⊗max part of Theorem 2.26, so we
direct you to [2, Proposition 1.5.6] and its use in the proof of [2, Theorem 3.5.3]. But for the sake of seeing
Stinespring’s Theorem in action, let’s prove that the algebraic tensor product of cp maps extends to a cp
map between spatial tensor products.
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Proof of Theorem 2.26 (for spatial tensor). Let A1, A2, B1, B2 be C∗-algebras and ϕi : Ai → Bi cp maps.
First, by taking faithful representations, it suffices to assume that Bi ⊂ B(Hi) for i = 1, 2 (why?). Then
ϕi : Ai → B(Hi) are cp maps, which have Stinespring dilations (πi,H′

i, Vi) for i = 1, 2. Since these are
∗-homomorphisms, π1⊙π2 : A1⊙A2 → B(H′

1)⊙B(H′
2) ⊂ B(H′

1⊗H′
2) extends to A1⊗A2. Define the map

ϕ1 ⊗ ϕ2 : A1 ⊗A2 → B1 ⊗B2 ⊂ B(H′
1 ⊗H′

2) by

ϕ1 ⊗ ϕ2(x) = (V1 ⊗ V2)
∗(π1 ⊗ π2)(x)(V1 ⊗ V2).

By Example 2.23, this is a cp map. Moreover, for elementary tensors a1 ⊙ a2 ∈ A2 ⊙A2, we have

ϕ1 ⊗ ϕ2(a1 ⊙ a2) = (V ∗
1 π1(a1)V1)⊗ (V ∗

2 π2(a2)V2) = ϕ1(a1)⊙ ϕ2(a2),

which means (by linearity) that ϕ1 ⊗ ϕ2|A1⊙A2
= ϕ1 ⊙ ϕ2. □
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