

Nuclear C^* -algebras as inductive limits of finite dimensional C^* -algebras

Kristin Courtney
with Wilhelm Winter

WWU Münster

C^* -Algebras: Tensor Products, Approximation & Classification
In honour of Eberhard Kirchberg
July 2023

WESTFÄLISCHE
WILHELMUS-UNIVERSITÄT
MÜNSTER

**GEOMETRY:
DEFORMATIONS
AND RIGIDITY**
CRC 1442

Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

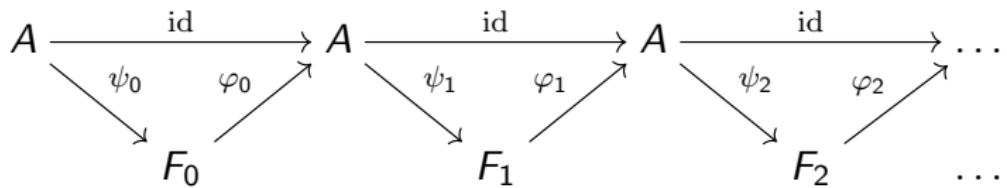
Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

This yields a sequence of approximately commuting diagrams.



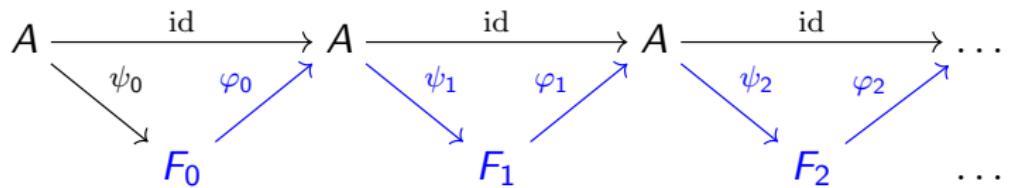
Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

This yields a sequence of approximately commuting diagrams.



All the information about A is contained in this system of approximations.

Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

This yields a sequence of approximately commuting diagrams.

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 \\ & F_0 & \xrightarrow{\psi_1 \circ \varphi_0} & F_1 & \xrightarrow{\psi_2 \circ \varphi_1} & F_2 & \dots \end{array}$$

All the information about A is contained in this system of approximations.

Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

This yields a sequence of approximately commuting diagrams.

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 \\ & F_0 & \xrightarrow{\psi_1 \circ \varphi_0} & F_1 & \xrightarrow{\psi_2 \circ \varphi_1} & F_2 & \dots \end{array}$$

All the information about A is contained in this system of approximations. But how can we read it off?

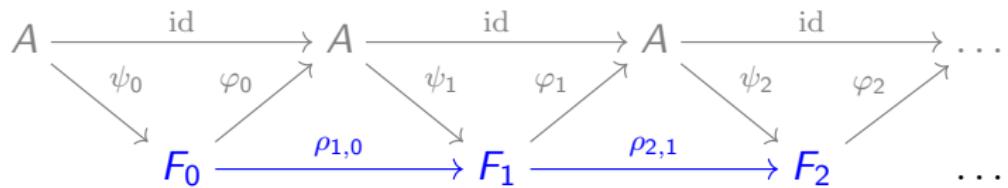
Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is **nuclear** iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $\psi_n : A \rightarrow F_n$ and $\varphi_n : F_n \rightarrow A$ such that $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a **system of cpc approximations** of A .

This yields a sequence of approximately commuting diagrams.

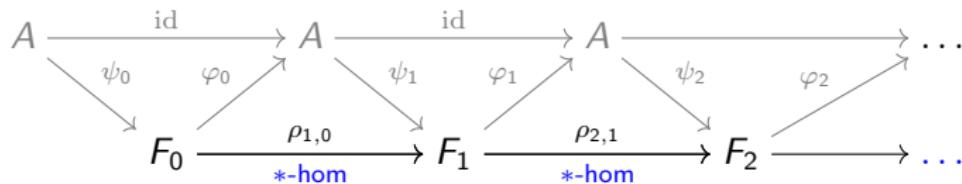


All the information about A is contained in this system of approximations. But how can we read it off? Without using A ?

Forming the limit

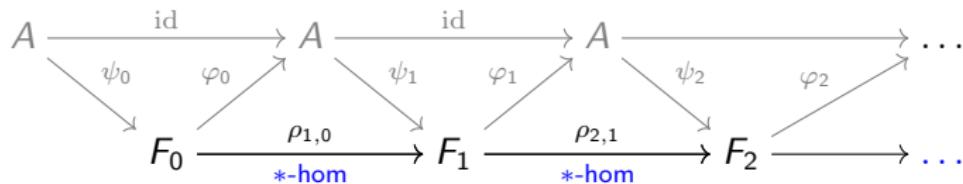
Forming the limit with $*$ -homomorphisms

Suppose the $\rho_{n+1,n}$ were $*$ -homomorphisms.



Forming the limit with $*$ -homomorphisms

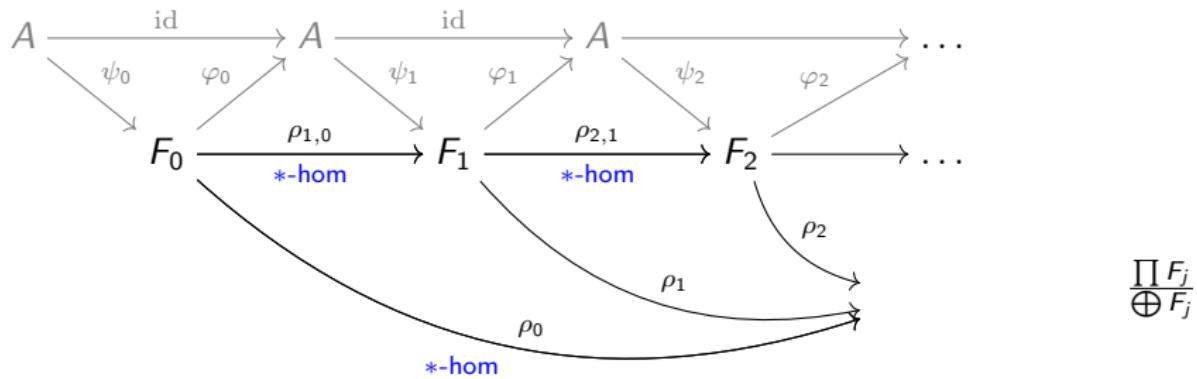
Suppose the $\rho_{n+1,n}$ were $*$ -homomorphisms. Then these induce $*$ -homomorphisms $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m > n}]$.



$$\frac{\prod F_j}{\bigoplus F_j}$$

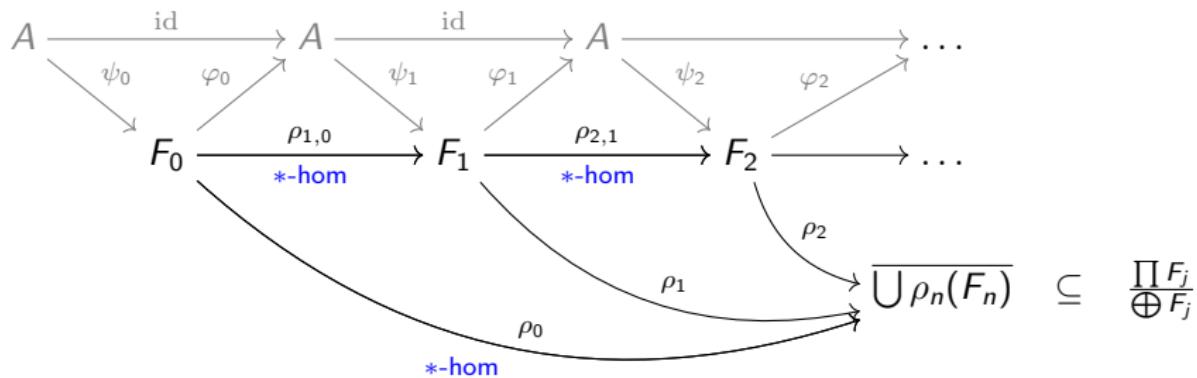
Forming the limit with $*$ -homomorphisms

Suppose the $\rho_{n+1,n}$ were $*$ -homomorphisms. Then these induce $*$ -homomorphisms $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m > n}]$.



Forming the limit with $*$ -homomorphisms

Suppose the $\rho_{n+1,n}$ were $*$ -homomorphisms. Then these induce $*$ -homomorphisms $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m > n}]$.

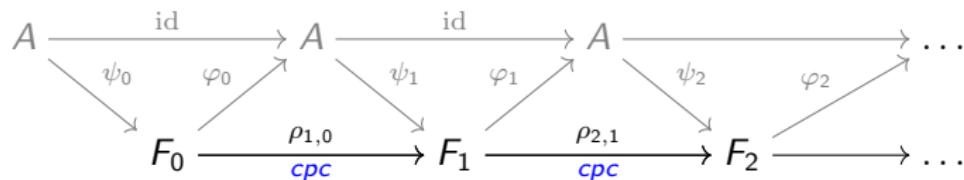


The limit of the system $(F_n, \rho_{n+1,n})_n$ is the C*-subalgebra

$$\varinjlim (F_n, \rho_{n+1,n}) := \overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j}.$$

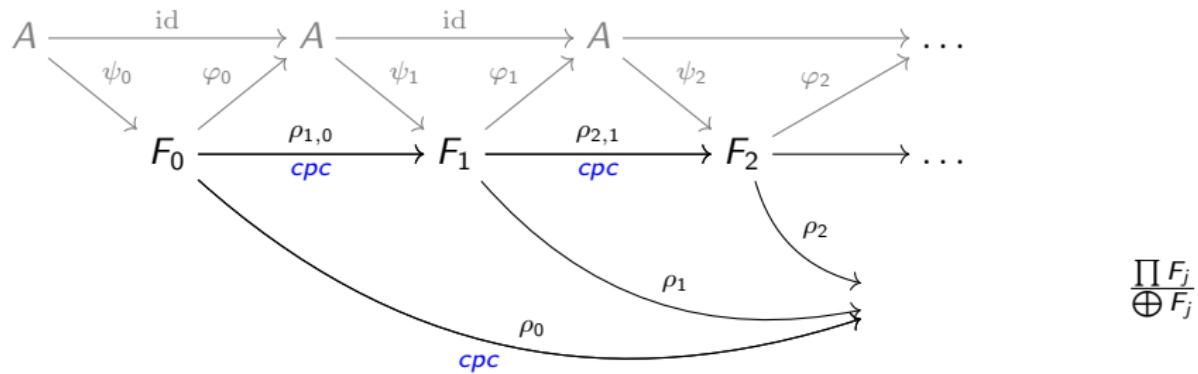
Forming the limit with cpc maps

When the $\rho_{n+1,n}$ are **cpc** maps,



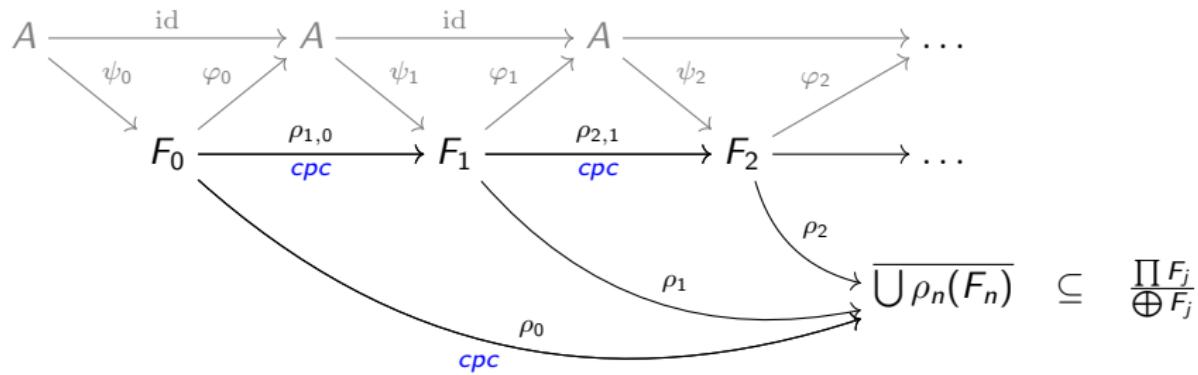
Forming the limit with cpc maps

When the $\rho_{n+1,n}$ are cpc maps, they still induce cpc maps
 $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m>n}]$.



Forming the limit with cpc maps

When the $\rho_{n+1,n}$ are cpc maps, they still induce cpc maps
 $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m>n}]$.



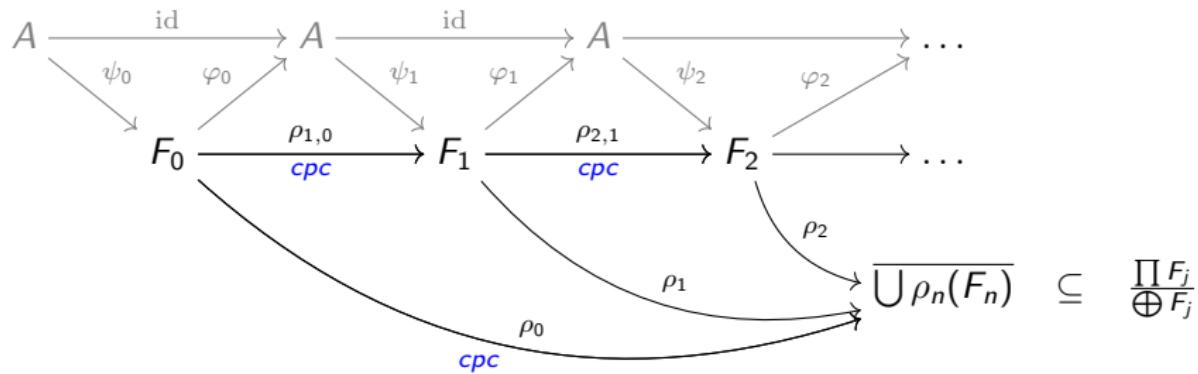
The limit of the system $(F_n, \rho_{n+1,n})_n$ is still

$$\overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j},$$

which is now just a closed self-adjoint subspace.

Forming the limit with cpc maps

When the $\rho_{n+1,n}$ are cpc maps, they still induce cpc maps
 $\rho_n : F_n \rightarrow \prod F_j / \bigoplus F_j$ with $\rho_n(x) = [(\rho_{m,n}(x))_{m>n}]$.



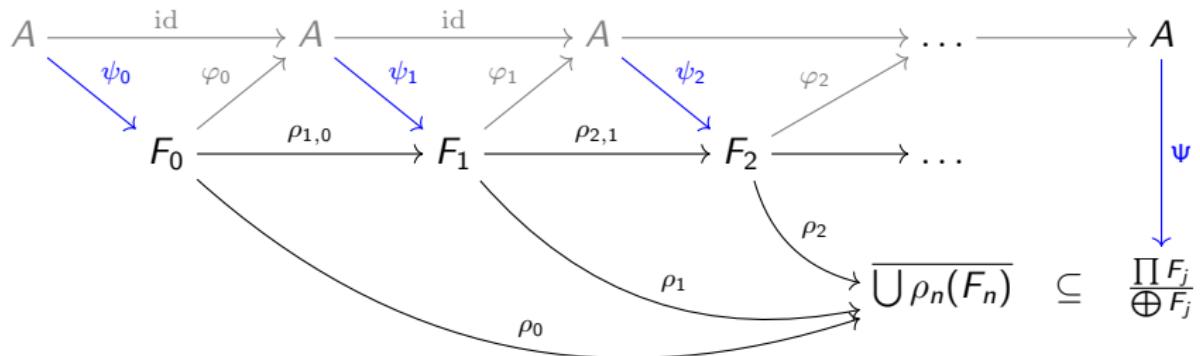
The limit of the system $(F_n, \rho_{n+1,n})_n$ is still

$$\overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j},$$

which is now just a closed self-adjoint subspace. How does it relate to A ?

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.

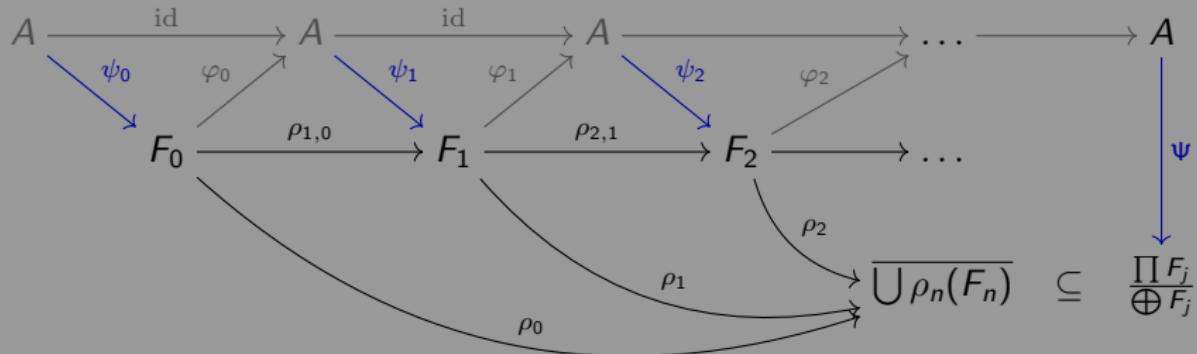


Ψ is isometric

since $(\psi_n)_n$ are approx isometric

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Ψ is isometric

since $(\psi_n)_n$ are approx isometric

$$\|\psi_n(a)\| \xrightarrow{n \rightarrow \infty} \|a\|, \quad \forall a \in A$$

Back to A

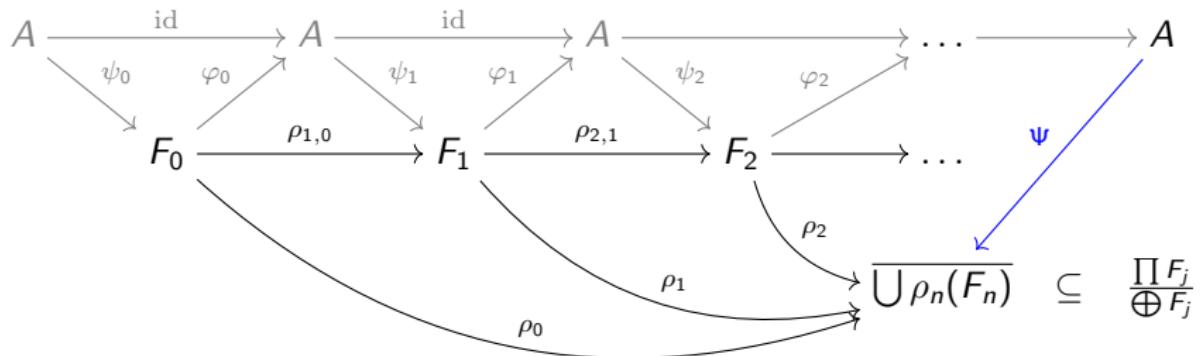
The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.

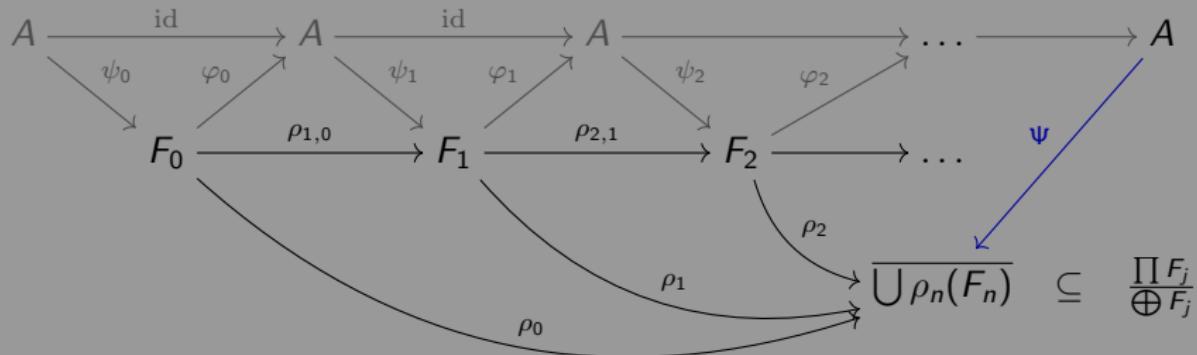


Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ if $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



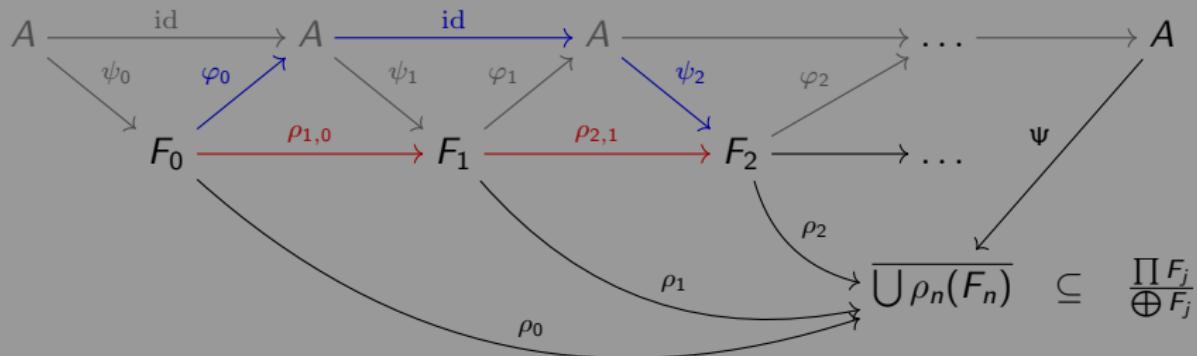
Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ if $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

$$\|\rho_{m,n} - \psi_m \circ \varphi_n\| \xrightarrow{m,n \rightarrow \infty} 0$$

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



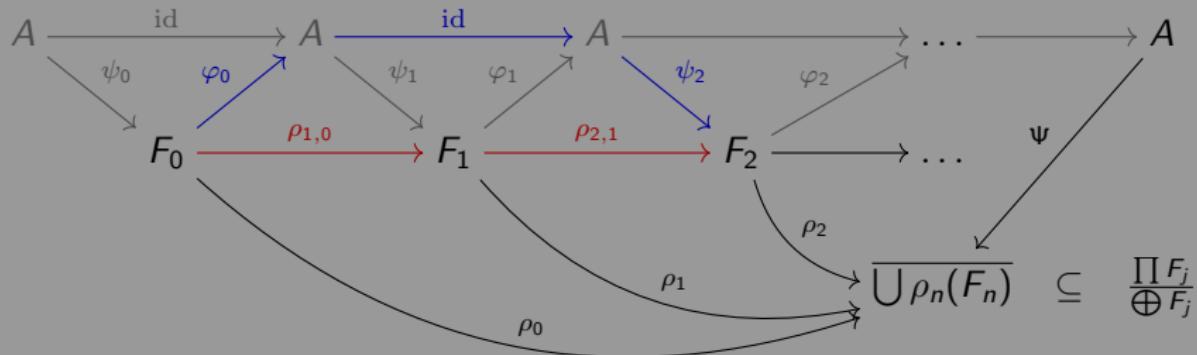
Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ if $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

$$\|\rho_{m,n} - \psi_m \circ \varphi_n\| \xrightarrow{m,n \rightarrow \infty} 0$$

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

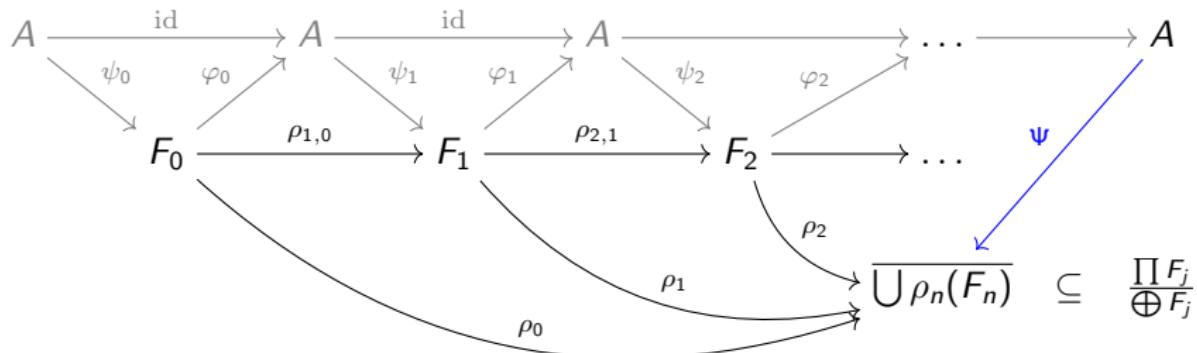
$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ if $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

$$\|\rho_{m,n} - \psi_m \circ \varphi_n\| \xrightarrow{m,n \rightarrow \infty} 0$$

Any system of cpc approximations admits a summable subsystem, so we assume our system is summable.

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.

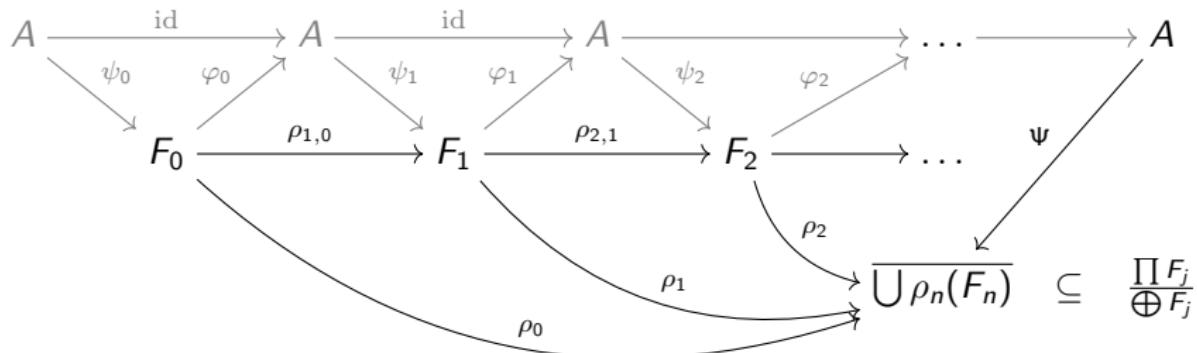


Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



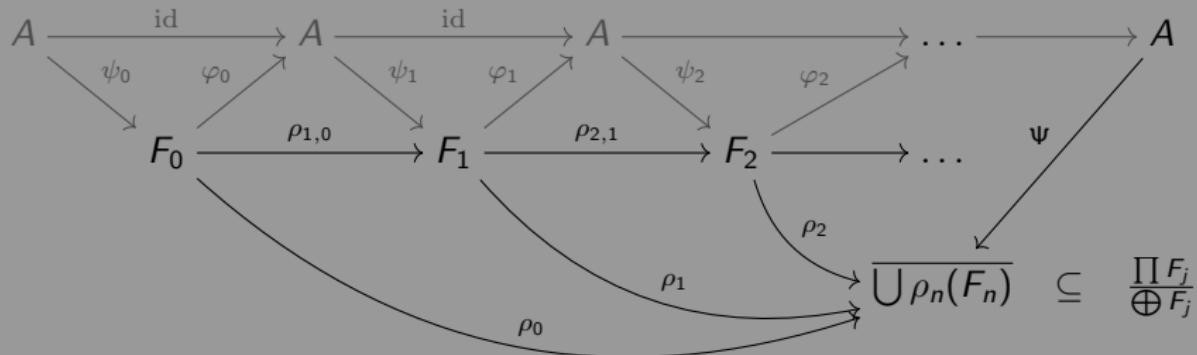
Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Ψ is a *-homomorphism if $(\psi_n)_n$ are approx mult

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

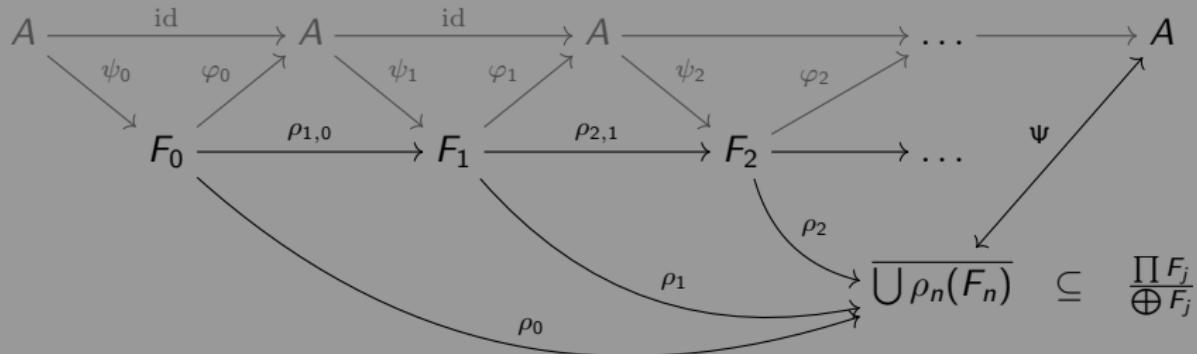
$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Ψ is a *-homomorphism if $(\psi_n)_n$ are approx mult

$$\|\psi_n(ab) - \psi_n(a)\psi_n(b)\| \xrightarrow{n \rightarrow \infty} 0, \quad \forall a, b \in A$$

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \overline{\bigoplus F_j} / \bigoplus F_j$.



Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

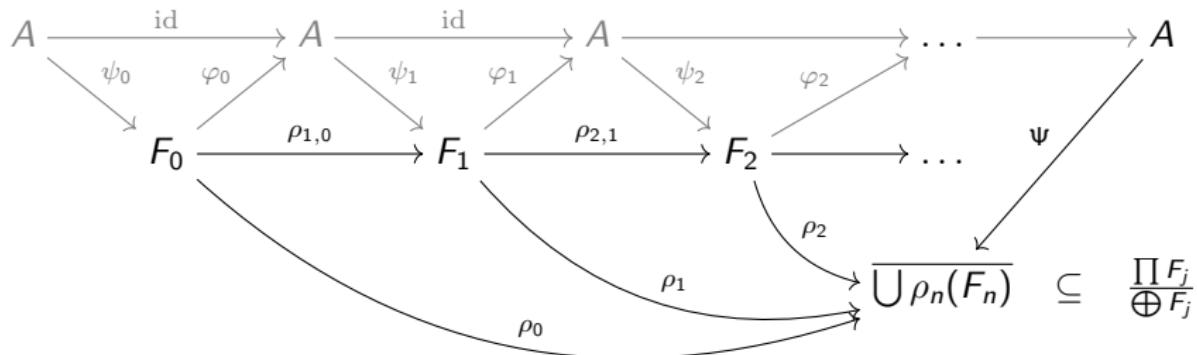
$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Ψ is a *-homomorphism if $(\psi_n)_n$ are approx mult

This can only happen if A is quasidiagonal.

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.

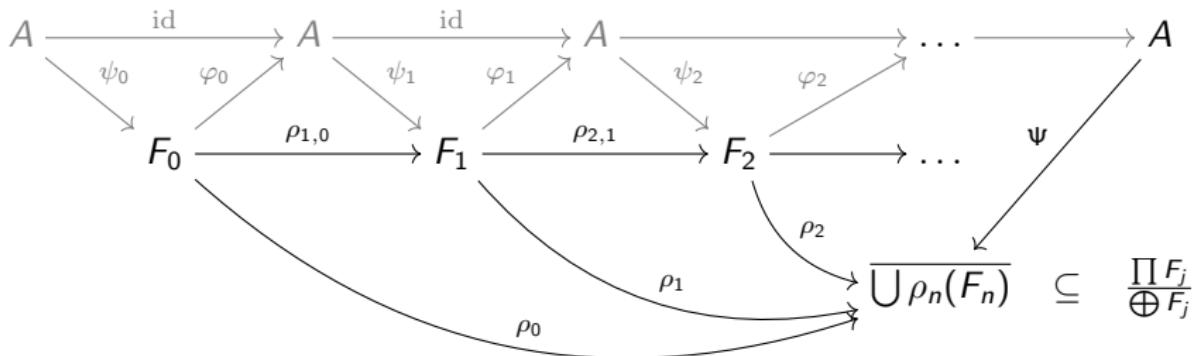


Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



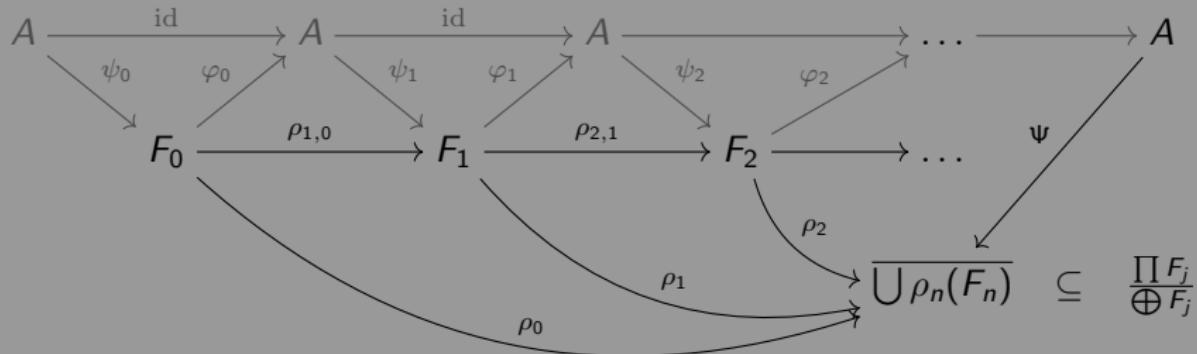
Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

$\rightsquigarrow \Psi : A \rightarrow \overline{\bigcup \rho_n(F_n)}$ is a complete order isomorphism (coi).

Back to A

The $(\psi_n)_n$ induce a cpc map $\Psi : A \rightarrow \prod F_j / \bigoplus F_j$.



Ψ is completely isometric since $(\psi_n^{(r)})_n$ are approx isometric $\forall r \geq 1$

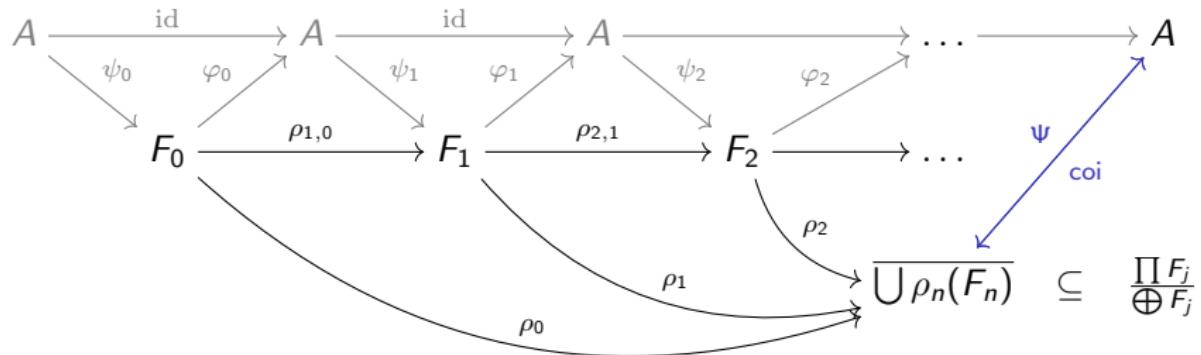
$\Psi(A) = \overline{\bigcup \rho_n(F_n)}$ since $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ is summable

$\rightsquigarrow \Psi : A \rightarrow \overline{\bigcup \rho_n(F_n)}$ is a complete order isomorphism (coi).

That means Ψ is completely isometric and cp with cp inverse.

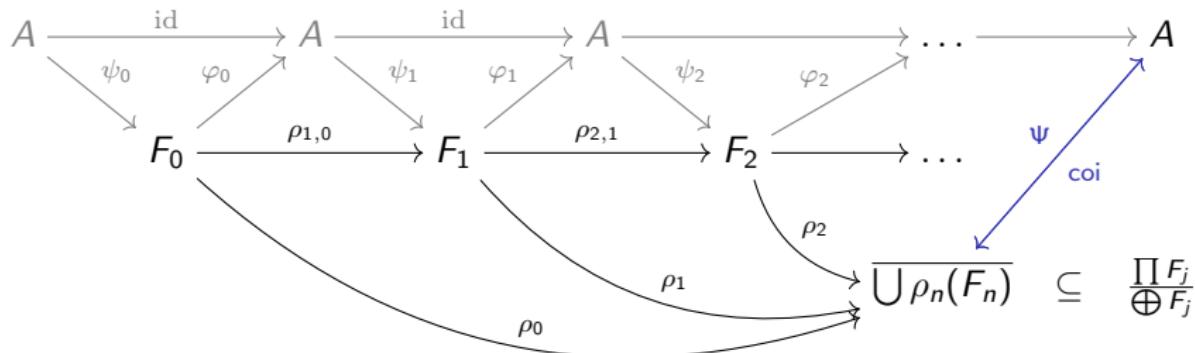
Back to A

The $(\psi_n)_n$ induce a **complete order isomorphism** $\Psi : A \rightarrow \overline{\bigcup \rho_n(F_n)}$.



Back to A

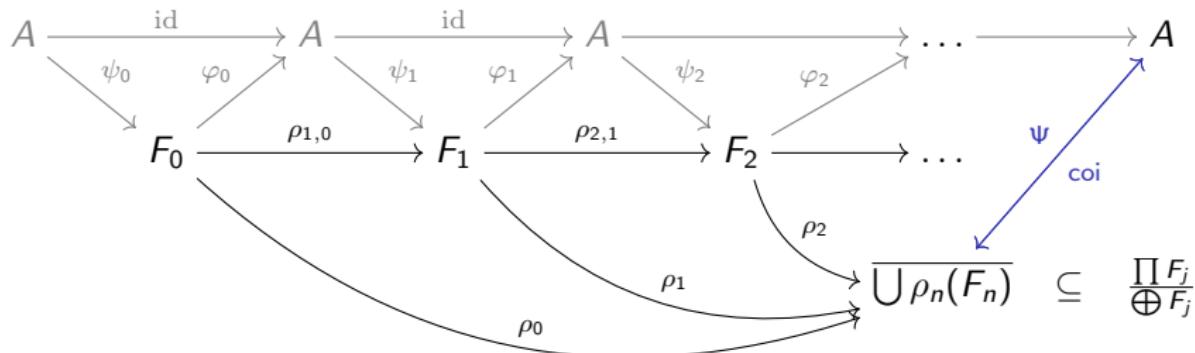
The $(\psi_n)_n$ induce a **complete order isomorphism** $\Psi : A \rightarrow \overline{\bigcup \rho_n(F_n)}$.



Since any coi between C*-algebras is automatically a *-isomorphism, the coi class of a C*-algebra captures its *-isomorphism class.

Back to A

The $(\psi_n)_n$ induce a **complete order isomorphism** $\Psi : A \rightarrow \overline{\bigcup \rho_n(F_n)}$.



Since any coi between C^* -algebras is automatically a $*$ -isomorphism, the coi class of a C^* -algebra captures its $*$ -isomorphism class.

Moreover, by equipping $\overline{\bigcup \rho_n(F_n)}$ with the product

$$\Psi(a) \bullet \Psi(b) := \Psi(ab), \quad \forall a, b \in A,$$

we get a C^* -algebra $(\overline{\bigcup \rho_n(F_n)}, \bullet)$, which is $*$ -isomorphic to A .

A nuclear C^* -algebra from a cpc system

Somehow this system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ produced, not a C^* -algebra, but a space completely order isomorphic to a nuclear C^* -algebra.

A nuclear C^* -algebra from a cpc system

Somehow this system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ produced, not a C^* -algebra, but a space completely order isomorphic to a nuclear C^* -algebra.

Definition

We call a sequence of C^* -algebras $(A_n)_n$ together with cpc connecting maps $\rho_{n+1,n} : A_n \rightarrow A_{n+1}$ a **cpc system**, denoted $(A_n, \rho_{n+1,n})_n$. When the A_n are all finite-dimensional, we call the system **finite-dimensional**.

A nuclear C^* -algebra from a cpc system

Somehow this system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ produced, not a C^* -algebra, but a space completely order isomorphic to a nuclear C^* -algebra.

Definition

We call a sequence of C^* -algebras $(A_n)_n$ together with cpc connecting maps $\rho_{n+1,n} : A_n \rightarrow A_{n+1}$ a **cpc system**, denoted $(A_n, \rho_{n+1,n})_n$. When the A_n are all finite-dimensional, we call the system **finite-dimensional**.

In one sense this is a special case of Blackadar and Kirchberg's Generalized Inductive Systems. In another sense, it is a generalization.

A nuclear C^* -algebra from a cpc system

Somehow this system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ produced, not a C^* -algebra, but a space completely order isomorphic to a nuclear C^* -algebra.

Definition

We call a sequence of C^* -algebras $(A_n)_n$ together with cpc connecting maps $\rho_{n+1,n} : A_n \rightarrow A_{n+1}$ a **cpc system**, denoted $(A_n, \rho_{n+1,n})_n$. When the A_n are all finite-dimensional, we call the system **finite-dimensional**.

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit $\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C^* -algebra?

Nuclearity

Proposition (C.-Winter, C.)

If the limit of a finite-dimensional cpc system is coi to a C^ -algebra A , then A is nuclear.*

Nuclearity

Proposition (C.-Winter, C.)

If the limit of a finite-dimensional cpc system is coi to a C-algebra A , then A is nuclear.*

This follows readily from Ozawa and Sato's One-Way-CPAP, which allows one to determine whether a given C*-algebra A is nuclear by finding a certain family of cpc maps $\{\varphi_\lambda : F_\lambda \rightarrow A\}_\lambda$ from finite-dimensional C*-algebras.

One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C^* -algebra A is nuclear iff there exists a net $(\varphi_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of cpc maps from finite-dimensional C^* -algebras such that the induced cpc map

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\varphi_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left(\left(\frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C^* -algebra A is nuclear iff there exists a net $(\varphi_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of cpc maps from finite-dimensional C^* -algebras such that the induced cpc map

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\varphi_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left(\left(\frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

To get the φ_n in our case:

$$\begin{array}{ccccccc} F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & \longrightarrow & \dots \\ & \searrow \rho_0 & \swarrow \rho_1 & \searrow \rho_2 & \nearrow & & \\ & & & & \overline{\bigcup \rho_n(F_n)} & \subseteq & \frac{\prod F_j}{\bigoplus F_j} \\ & & & & \uparrow \Psi^{\text{coi}} & & \\ & & & & A & & \end{array}$$

One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C^* -algebra A is nuclear iff there exists a net $(\varphi_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of cpc maps from finite-dimensional C^* -algebras such that the induced cpc map

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\varphi_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left(\left(\frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

To get the φ_n in our case:

$$\begin{array}{ccccccc} F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & \longrightarrow & \dots \\ & \searrow \rho_0 & \swarrow \rho_1 & \searrow \rho_2 & \swarrow & & \\ & & & & \overline{\bigcup \rho_n(F_n)} & \subseteq & \frac{\prod F_j}{\bigoplus F_j} \\ & & & & \downarrow \Psi^{-1} \text{ coi} & & \\ & & & & A & & \end{array}$$

One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C^* -algebra A is nuclear iff there exists a net $(\varphi_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of cpc maps from finite-dimensional C^* -algebras such that the induced cpc map

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\varphi_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left(\left(\frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

To get the φ_n in our case:

$$\begin{array}{ccccccc} F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & \longrightarrow & \dots \\ & \searrow \rho_0 & \downarrow \rho_1 & \searrow \rho_2 & & & \\ & & \overline{\bigcup \rho_n(F_n)} & & & \subseteq & \frac{\prod F_j}{\bigoplus F_j} \\ & & \downarrow \Psi^{-1} \text{ coi} & & & & \\ & & A & & & & \end{array}$$

Back to our question

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit $\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C^* -algebra?

Back to our question

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit $\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C^* -algebra?

NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if it is *asymptotically multiplicative*,

NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if it is *asymptotically multiplicative*, meaning that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if it is *asymptotically multiplicative*, meaning that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

Think of this as saying that for $m > n > M$, the maps $\rho_{m,n}$ become more multiplicative on $\rho_{n,k}(x)$ and $\rho_{n,k}(y)$.

$$\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \|\rho_{m,n}(\rho_{n,k}(x))\rho_{m,n}(\rho_{n,k}(y))\| < \varepsilon.$$

NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if it is *asymptotically multiplicative*, meaning that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

The limit $\overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j}$ is a C^* -subalgebra with multiplication

$$\rho_k(x)\rho_k(y) = \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)), \quad k \geq 0, x, y \in F_k.$$

NF systems (Blackadar and Kirchberg)

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear and quasidiagonal.*
2. *A is $*$ -isomorphic to the limit of an NF system.*

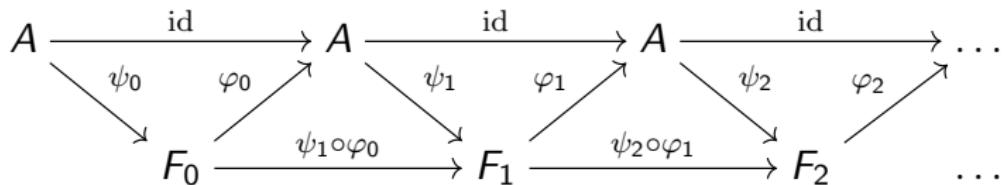
NF systems (Blackadar and Kirchberg)

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C^* -algebra A :

1. A is nuclear and quasidiagonal.
2. A is $*$ -isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C^* -algebra A , there exists a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately multiplicative so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is NF and its limit is $*$ -isom to A .



Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras,

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

To drop quasidiagonality, we must relax the asymptotic multiplicativity assumption.

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

To drop quasidiagonality, we must relax the asymptotic multiplicativity assumption.

And the expectation that the limit is a C^* -subalgebra of $\prod F_j / \bigoplus F_j$

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

To drop quasidiagonality, we must relax the asymptotic multiplicativity assumption.

A natural step down comes from order zero maps.

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

To drop quasidiagonality, we must relax the asymptotic multiplicativity assumption.

A natural step down comes from order zero maps.

Proposition (Winter–Zacharias '09)

Let A and B be C^* -algebras with A unital. A cp map $\varphi : A \rightarrow B$ is order zero iff $\varphi(a)\varphi(b) = \varphi(1_A)\varphi(ab)$ for all $a, b \in A$.

Nuclear non-QD C^* -algebras

This result covers many interesting examples of separable nuclear C^* -algebras, but many others are not QD, e.g. Kirchberg algebras or any nuclear C^* -algebra with a proper isometry.

To drop quasidiagonality, we must relax the asymptotic multiplicativity assumption.

A natural step down comes from order zero maps.

Proposition (Winter–Zacharias '09)

Let A and B be C^* -algebras with A unital. A cp map $\varphi : A \rightarrow B$ is order zero iff $\varphi(a)\varphi(b) = \varphi(1_A)\varphi(ab)$ for all $a, b \in A$.

Note that a unital cp order zero map is automatically a $*$ -homomorphism.

NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if it is asymptotically **multiplicative**, meaning that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

The limit $\overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j}$ is a **C*-subalgebra** with multiplication

$$\rho_k(x)\rho_k(y) = \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)), \quad k \geq 0, x, y \in F_k.$$

CPC*-systems (C.-Winter)

Definition (C.-Winter '23)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is CPC* if it is asymptotically order zero, meaning that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n, j > M$

$$\|\rho_{m,j}(1_{F_j})\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

The limit $\overline{\bigcup \rho_n(F_n)} \subset \overline{\bigoplus F_j}^{\prod F_j}$ is completely order isomorphic to the C*-algebra $\overline{\bigcup \rho_n(F_n)}, \bullet)$ with multiplication

$$\rho_k(x) \bullet \rho_k(y) = \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)), \quad k \geq 0, x, y \in F_k.$$

NF and CPC*-systems

Theorem (C.–Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C-algebra A:*

1. *A nuclear.*
2. *A is coi to the limit of a CPC*-system.*

NF and CPC*-systems

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C*-algebra A :

1. A nuclear.
2. A is coi to the limit of a CPC*-system.

Moreover, for any nuclear C*-algebra A , there exists a system

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC* and its limit is coi to A .

NF and CPC*-systems

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C*-algebra A :

1. A nuclear.
2. A is coi to the limit of a CPC*-system.

Moreover, for any nuclear C*-algebra A , there exists a system

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC* and its limit is coi to A .

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C*-algebra A :

1. A is nuclear and QD.
2. A is *-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C*-algebra A , there exists a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately multiplicative so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is NF and its limit is *-isom to A .

NF and CPC*-systems

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C*-algebra A :

1. A nuclear.
2. A is coi to the limit of a CPC*-system.

Moreover, for any nuclear C*-algebra A , there exists a system

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC* and its limit is coi to A .

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C*-algebra A :

1. A is nuclear and QD.
2. A is *-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C*-algebra A , there exists a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately multiplicative so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is NF and its limit is *-isom to A .

Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps.

Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps. But these can be hard to get our hands on.

NF and CPC*-systems

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C*-algebra A :

1. A nuclear.
2. A is coi to the limit of a CPC*-system.

Moreover, for any nuclear C*-algebra A , there exists a system

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC* and its limit is coi to A .

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C*-algebra A :

1. A is nuclear and QD.
2. A is *-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C*-algebra A , there exists a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately multiplicative so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is NF and its limit is *-isom to A .

NF and CPC*-systems

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C*-algebra A :

1. A nuclear.
2. A is coi to the limit of a CPC*-system.

Moreover, for any nuclear C*-algebra A , **there exists** a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC* and its limit is coi to A .

Theorem (Blackadar–Kirchberg '97)

The following are equivalent for a separable C*-algebra A :

1. A is nuclear and QD.
2. A is *-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C*-algebra A , **there exists** a system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately multiplicative so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is NF and its limit is *-isom to A .

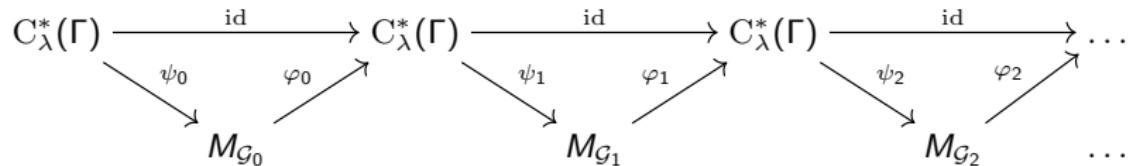
Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps. But these can be hard to get our hands on.

Though systems $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations with $(\psi_n)_n$ approximately multiplicative/ order zero are known to exist, they can be hard to find, and many well-known systems of cpc approximations do not produce NF or CPC*-systems.

Systems from Følner sequences

For a countable, discrete, amenable group Γ , we can use any Følner sequence $(\mathcal{G}_n)_n$ to construct a system of ucp approximations of $C_\lambda^*(\Gamma)$:



Systems from Følner sequences

For a countable, discrete, amenable group Γ , we can use any Følner sequence $(\mathcal{G}_n)_n$ to construct a system of ucp approximations of $C_\lambda^*(\Gamma)$:

$$\begin{array}{ccccccc} C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & \dots \\ & \searrow \psi_0 & \nearrow \varphi_0 & & \searrow \psi_1 & \nearrow \varphi_1 & \\ & & M_{\mathcal{G}_0} & & M_{\mathcal{G}_1} & & M_{\mathcal{G}_2} \\ & & & & & & \dots \end{array}$$

Identifying $M_{\mathcal{G}_n} \cong P_n B(\ell^2(\Gamma)) P_n$ with $P_n = \text{proj}_{\text{span}\{\delta_g \mid g \in \mathcal{G}_n\}}$, we set

$$\psi_n(x) = P_n x P_n \text{ for } x \in C_\lambda^*(\Gamma) \subset B(\ell^2(\Gamma))$$

and

$$\varphi_n(e_{g,h}) = \frac{1}{|\mathcal{F}_n|} \lambda_{gh^{-1}}$$

where $\{e_{g,h} \mid g, h \in \mathcal{G}_n\} \subset M_{\mathcal{G}_n}$ are the matrix units.

Systems from Følner sequences

For a countable, discrete, amenable group Γ , we can use any Følner sequence $(\mathcal{G}_n)_n$ to construct a system of ucp approximations of $C_\lambda^*(\Gamma)$:

$$\begin{array}{ccccccc} C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & \dots \\ & \searrow \psi_0 & \nearrow \varphi_0 & & \searrow \psi_1 & \nearrow \varphi_1 & \\ & & M_{\mathcal{G}_0} & & M_{\mathcal{G}_1} & & M_{\mathcal{G}_2} \\ & & & & & & \dots \end{array}$$

Identifying $M_{\mathcal{G}_n} \cong P_n B(\ell^2(\Gamma)) P_n$ with $P_n = \text{proj}_{\text{span}\{\delta_g \mid g \in \mathcal{G}_n\}}$, we set

$$\psi_n(x) = P_n x P_n \text{ for } x \in C_\lambda^*(\Gamma) \subset B(\ell^2(\Gamma))$$

and

$$\varphi_n(e_{g,h}) = \frac{1}{|\mathcal{F}_n|} \lambda_{gh^{-1}}$$

where $\{e_{g,h} \mid g, h \in \mathcal{G}_n\} \subset M_{\mathcal{G}_n}$ are the matrix units. e.g. $\Gamma = \mathbb{Z}$

Systems from Følner sequences

For a countable, discrete, amenable group Γ , we can use any Følner sequence $(\mathcal{G}_n)_n$ to construct a system of ucp approximations of $C_\lambda^*(\Gamma)$:

$$\begin{array}{ccccccc} C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & \dots \\ & \searrow \psi_0 & \nearrow \varphi_0 & & \searrow \psi_1 & \nearrow \varphi_1 & \\ & & M_{\mathcal{G}_0} & & M_{\mathcal{G}_1} & & M_{\mathcal{G}_2} \\ & & & & & & \dots \end{array}$$

Identifying $M_{\mathcal{G}_n} \cong P_n B(\ell^2(\Gamma)) P_n$ with $P_n = \text{proj}_{\text{span}\{\delta_g \mid g \in \mathcal{G}_n\}}$, we set

$$\psi_n(x) = P_n x P_n \text{ for } x \in C_\lambda^*(\Gamma) \subset B(\ell^2(\Gamma))$$

and

$$\varphi_n(e_{g,h}) = \frac{1}{|\mathcal{F}_n|} \lambda_{gh^{-1}}$$

where $\{e_{g,h} \mid g, h \in \mathcal{G}_n\} \subset M_{\mathcal{G}_n}$ are the matrix units. e.g. $\Gamma = \mathbb{Z}$

Proposition (C.)

If Γ has a non-torsion element (e.g. $\Gamma = \mathbb{Z}$), then the maps $(\psi_n)_n$ will be neither approximately multiplicative nor approximately order zero

Systems from Følner sequences

For a countable, discrete, amenable group Γ , we can use any Følner sequence $(\mathcal{G}_n)_n$ to construct a system of ucp approximations of $C_\lambda^*(\Gamma)$:

$$\begin{array}{ccccccc} C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & C_\lambda^*(\Gamma) & \xrightarrow{\text{id}} & \dots \\ & \searrow \psi_0 & \nearrow \varphi_0 & \searrow \psi_1 & \nearrow \varphi_1 & \searrow \psi_2 & \nearrow \varphi_2 \\ & & M_{\mathcal{G}_0} & \xrightarrow{\psi_1 \circ \varphi_0} & M_{\mathcal{G}_1} & \xrightarrow{\psi_2 \circ \varphi_1} & M_{\mathcal{G}_2} \\ & & & \dots & & & \dots \end{array}$$

Identifying $M_{\mathcal{G}_n} \cong P_n B(\ell^2(\Gamma)) P_n$ with $P_n = \text{proj}_{\text{span}\{\delta_g \mid g \in \mathcal{G}_n\}}$, we set

$$\psi_n(x) = P_n x P_n \text{ for } x \in C_\lambda^*(\Gamma) \subset B(\ell^2(\Gamma))$$

and

$$\varphi_n(e_{g,h}) = \frac{1}{|\mathcal{F}_n|} \lambda_{gh^{-1}}$$

where $\{e_{g,h} \mid g, h \in \mathcal{G}_n\} \subset M_{\mathcal{G}_n}$ are the matrix units. e.g. $\Gamma = \mathbb{Z}$

Proposition (C.)

If Γ has a non-torsion element (e.g. $\Gamma = \mathbb{Z}$), then the maps $(\psi_n)_n$ will be neither approximately multiplicative nor approximately order zero, and the resulting cpc system $(M_{\mathcal{G}_n}, \psi_{n+1} \circ \varphi_n)_n$ will neither be NF nor CPC*.

Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps. But these can be hard to get our hands on.

Though systems $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations with $(\psi_n)_n$ approximately multiplicative/ order zero are known to exist, they can be hard to find, and many well-known systems of cpc approximations do not produce NF or CPC*-systems.

Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps. But these can be hard to get our hands on.

Though systems $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations with $(\psi_n)_n$ approximately multiplicative/ order zero are known to exist, they can be hard to find, and many well-known systems of cpc approximations do not produce NF or CPC*-systems.

However, we saw that any system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations produces (after possibly passing to a summable subsystem) a cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ whose limit is completely order isomorphic to a nuclear C*-algebra.

Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry significantly more structure than generic cpc maps. But these can be hard to get our hands on.

Though systems $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations with $(\psi_n)_n$ approximately multiplicative/ order zero are known to exist, they can be hard to find, and many well-known systems of cpc approximations do not produce NF or CPC*-systems.

However, we saw that any system $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations produces (after possibly passing to a summable subsystem) a cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ whose limit is completely order isomorphic to a nuclear C*-algebra.

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit $\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C*-algebra?

C*-encoding systems (C.)

Definition (C.'23)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **C*-encoding** if for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n, j > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| < \varepsilon.$$

C*-encoding systems (C.)

Definition (C.'23)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **C*-encoding** if for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ so that for all $m > n, j > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| < \varepsilon.$$

The limit $\overline{\bigcup \rho_n(F_n)} \subset \frac{\prod F_j}{\bigoplus F_j}$ is completely order isomorphic to the C*-algebra $(\overline{\bigcup \rho_n(F_n)}, \bullet)$ with multiplication

$$\rho_k(x) \bullet \rho_k(y) = \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)), \quad k \geq 0, x, y \in F_k.$$

All together

Definition (Blackadar–Kirchberg '97)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **NF** if
 $\forall k \geq 0, x, y \in F_k$, and $\varepsilon > 0$, $\exists M > k$ so that $\forall m > n, j > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

Definition (C.–Winter '23)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **CPC*** if
 $\forall k \geq 0, x, y \in F_k$, and $\varepsilon > 0$, $\exists M > k$ so that $\forall m > n, j > M$

$$\|\rho_{m,j}(1_{F_j})\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

Definition (C.'23)

A finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$ is **C*-encoding** if
 $\forall k \geq 0, x, y \in F_k$, and $\varepsilon > 0$, $\exists M > k$ so that $\forall m > n, j > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| < \varepsilon.$$

C*-encoding systems

Theorem (C. '23)

The following are equivalent for a separable C-algebra A:*

1. *A is nuclear.*
2. *A is coi to the limit of a C*-encoding system.*

C*-encoding systems

Theorem (C. '23)

The following are equivalent for a separable C-algebra A:*

1. *A is nuclear.*
2. *A is coi to the limit of a C*-encoding system.*

Moreover, for any nuclear C-algebra A and any¹ system*

($A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$)_n of cpc approximations of A the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is C-encoding and its limit is coi to A.*

¹after possibly passing to a summable subsystem— same for NF and CPC*

C*-encoding systems

Theorem (C. '23)

The following are equivalent for a separable C-algebra A:*

1. *A is nuclear.*
2. *A is coi to the limit of a C*-encoding system.*

Moreover, for any nuclear C-algebra A and any¹ system*

($A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$)_n *of cpc approximations of A the induced cpc system*
($F_n, \psi_{n+1} \circ \varphi_n$)_n *is C*-encoding and its limit is coi to A.*

Theorem (C.-Winter '23 (via Brown–Carrión–White))

The following are equivalent for a separable C-algebra A:*

1. *A nuclear.*
2. *A is coi to the limit of a CPC*-system.*

¹after possibly passing to a summable subsystem— same for NF and CPC*

C*-encoding systems

Theorem (C. '23)

The following are equivalent for a separable C-algebra A:*

1. *A is nuclear.*
2. *A is coi to the limit of a C*-encoding system.*

Moreover, for any nuclear C-algebra A and any¹ system*

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations of A the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is C-encoding and its limit is coi to A.*

Theorem (C.–Winter '23 (via Brown–Carrión–White))

Moreover, for any nuclear C-algebra A, there exists a system*

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC and its limit is coi to A.*

¹after possibly passing to a summable subsystem– same for NF and CPC*

C*-encoding systems

Theorem (C. '23)

The following are equivalent for a separable C-algebra A:*

1. *A is nuclear.*
2. *A is coi to the limit of a C*-encoding system.*

Moreover, for any nuclear C-algebra A and any¹ system*

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of cpc approximations of A the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is C-encoding and its limit is coi to A.*

Theorem (C.-Winter '23 (via Brown–Carrión–White))

Moreover, for any nuclear C-algebra A, there exists a system*

$(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with $(\psi_n)_n$ approximately order zero so that the induced cpc system $(F_n, \psi_{n+1} \circ \varphi_n)_n$ is CPC and its limit is coi to A.*

¹after possibly passing to a summable subsystem— same for NF and CPC*

C*-encoding systems

Example

Any NF system is C*-encoding and (C.-Winter) has a CPC*-subsystem.

C*-encoding systems

Example

Any NF system is C*-encoding and (C.-Winter) has a CPC*-subsystem.

(C.) Any CPC*-system has a C*-encoding subsystem.

C*-encoding systems

Example

Any NF system is C*-encoding and (C.-Winter) has a CPC*-subsystem.

(C.) Any CPC*-system has a C*-encoding subsystem.

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit

$\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C*-algebra?

C*-encoding systems

Example

Any NF system is C*-encoding and (C.-Winter) has a CPC*-subsystem.

(C.) Any CPC*-system has a C*-encoding subsystem.

Question

Given a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, when is the limit

$\overline{\bigcup \rho_n(F_n)}$ coi to a (nuclear) C*-algebra?

Theorem (C. '23)

For a finite-dimensional cpc system $(F_n, \rho_{n+1,n})_n$, the following are equivalent

1. The limit is coi to a C*-algebra.
2. The limit is coi to a nuclear C*-algebra. (CW, OS)
3. The system has a C*-encoding subsystem.

Thank you.

Explicit example: $C^*_\lambda(\mathbb{Z})$

For $G = \mathbb{Z}$ and Følner sets $(\{0, \dots, n-1\})_n$, we have $M_{\mathcal{G}_n} = M_n$ with matrix units $\{e_{i,j}\}_{i,j=0}^{n-1}$. Then for each n

$$\psi_n \left(\sum_{k \in \mathbb{Z}} a_k \lambda_k \right) = \psi_n \left(\begin{bmatrix} \ddots & & & & & & \\ & \ddots & & & & & \\ & & \ddots & & & & \\ & & & a_0 & a_{-1} & a_{-2} & \ddots \\ & & & a_1 & a_0 & a_{-1} & \ddots \\ & & & a_2 & a_1 & a_0 & \ddots \\ & & & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \right) = \begin{bmatrix} a_0 & a_{-1} & \dots & a_{-(n-1)} \\ a_1 & a_0 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & \dots & \dots & a_0 \end{bmatrix}.$$

and $\varphi_n(e_{i,j}) = \frac{1}{n} \lambda_{i-j}$.

[back](#)

Explicit example: $C^*_\lambda(\mathbb{Z})$

For $G = \mathbb{Z}$ and Følner sets $(\{0, \dots, n-1\})_n$, we have $M_{\mathcal{G}_n} = M_n$ with matrix units $\{e_{i,j}\}_{i,j=0}^{n-1}$. Then for each n

$$\psi_n \left(\sum_{k \in \mathbb{Z}} a_k \lambda_k \right) = \psi_n \left(\begin{bmatrix} & & & & & \\ & & & & & \\ & & a_0 & a_{-1} & a_{-2} & \\ & & a_1 & a_0 & a_{-1} & \\ & & a_2 & a_1 & a_0 & \\ & & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \right) = \begin{bmatrix} a_0 & a_{-1} & \dots & a_{-(n-1)} \\ a_1 & a_0 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & \dots & \dots & a_0 \end{bmatrix}.$$

and $\varphi_n(e_{i,j}) = \frac{1}{n} \lambda_{i-j}$. [back](#)

For $m > n \geq 0$ the compositions $\rho_{m,n}$ are given on matrix units by

$$\rho_{m,n}(e_{i,j}) = \frac{1}{n} \left(\prod_{k=1}^{m-1} 1 - \frac{|i-j|}{n+k} \right) S_m^{i-j},$$

where $S_n \in M_n$ is the shift.

Summability

A system of c.p.c. approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of a separable C^* -algebra A is **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that $\|\varphi_n - \varphi_m \circ \psi_m \circ \varphi_n\| < \varepsilon_n$ for all $m > n \geq 0$.

Summability

A system of c.p.c. approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of a separable C^* -algebra A is **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that $\|\varphi_n - \varphi_m \circ \psi_m \circ \varphi_n\| < \varepsilon_n$ for all $m > n \geq 0$.

We will call a Følner sequence $(\mathcal{G}_n)_n$ for a discrete group G **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that for all $m > n \geq 0$

$$\max_{g,h \in \mathcal{G}_n} \left(1 - \frac{|\mathcal{G}_m \cap gh^{-1}\mathcal{G}_m|}{|\mathcal{G}_m|} \right) |\mathcal{G}_n| < \varepsilon_m.$$

Summability

A system of c.p.c. approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of a separable C^* -algebra A is **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that $\|\varphi_n - \varphi_m \circ \psi_m \circ \varphi_n\| < \varepsilon_n$ for all $m > n \geq 0$.

We will call a Følner sequence $(\mathcal{G}_n)_n$ for a discrete group G **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that for all $m > n \geq 0$

$$\max_{g,h \in \mathcal{G}_n} \left(1 - \frac{|\mathcal{G}_m \cap gh^{-1}\mathcal{G}_m|}{|\mathcal{G}_m|} \right) |\mathcal{G}_n| < \varepsilon_m.$$

One sub-Følner sequence of $(\{0, \dots, n\})_n$ for \mathbb{Z} making the system of cpc approximations from before summable (for $\varepsilon_n = 2^{n+1}$) is given by $\mathcal{G}_0 = \{0\}$ and $\mathcal{G}_n = \{0, \dots, 2^n|\mathcal{G}_{n-1}|\}$ for $n \geq 1$.

Summability

A system of c.p.c. approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ of a separable C^* -algebra A is **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that $\|\varphi_n - \varphi_m \circ \psi_m \circ \varphi_n\| < \varepsilon_n$ for all $m > n \geq 0$.

We will call a Følner sequence $(\mathcal{G}_n)_n$ for a discrete group G **summable** if there exists a decreasing sequence $(\varepsilon_n) \in \ell^1(\mathbb{N})_+^1$ so that for all $m > n \geq 0$

$$\max_{g,h \in \mathcal{G}_n} \left(1 - \frac{|\mathcal{G}_m \cap gh^{-1}\mathcal{G}_m|}{|\mathcal{G}_m|} \right) |\mathcal{G}_n| < \varepsilon_m.$$

One sub-Følner sequence of $(\{0, \dots, n\})_n$ for \mathbb{Z} making the system of cpc approximations from before summable (for $\varepsilon_n = 2^{n+1}$) is given by $\mathcal{G}_0 = \{0\}$ and $\mathcal{G}_n = \{0, \dots, 2^n|\mathcal{G}_{n-1}|\}$ for $n \geq 1$. Then we have

$$\varphi_n(\psi_n(\lambda_k)) = \varphi_n(S_{|\mathcal{G}_n|}^k) = \frac{|\mathcal{G}_n| - |k|}{|\mathcal{G}_n|} \lambda_k$$

for $n > k \geq 0$ where $S_{|\mathcal{G}_n|} \in M_{|\mathcal{G}_n|}$ is the shift. A few iterations yields

$$\rho_{m,n}(e_{i,j}) = \frac{1}{|\mathcal{G}_n|} \left(\prod_{k=1}^{m-1} \frac{|\mathcal{G}_{n+k}| - |i - j|}{|\mathcal{G}_{n+k}|} \right) S_{|\mathcal{G}_m|}^{i-j}, \quad \text{for } m > n \geq 0, 0 \leq i, j \leq n.$$