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llon © ¥n(a) — a|| — 0 for all a € A.

We call (A Yo, F, 2o A)n a system of cpc approximations of A.



Nuclear C*-algebras

Theorem /Definition (Choi-Effros '78; Kirchberg '77)

A separable C*-algebra A is nuclear iff there exists a sequence of
finite-dimensional C*-algebras (F,)nen and completely positive
contractive (cpc) maps ¥, : A — F, and ¢, : F, — A such that
llon © ¥n(a) — a|| — 0 for all a € A.

We call (A Yo, F, 2o A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A id . A id A id .
N 2SN 2N S
FO Fl F2




Nuclear C*-algebras

Theorem /Definition (Choi-Effros '78; Kirchberg '77)

A separable C*-algebra A is nuclear iff there exists a sequence of
finite-dimensional C*-algebras (F,)nen and completely positive
contractive (cpc) maps ¥, : A — F, and ¢, : F, — A such that
llon © ¥n(a) — a|| — 0 for all a € A.

We call (A Yo, F, 2o A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A id . A id A id R
N AN AN
FO Fl F2

All the information about A is contained in this system of
approximations.




Nuclear C*-algebras

Theorem /Definition (Choi-Effros '78; Kirchberg '77)

A separable C*-algebra A is nuclear iff there exists a sequence of
finite-dimensional C*-algebras (F,)nen and completely positive
contractive (cpc) maps ¥, : A — F, and ¢, : F, — A such that
llon © ¥n(a) — a|| — 0 for all a € A.

We call (A Yo, F, 2o A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

< /W\ /w\ /

All the information about A is contained in this system of
approximations.




Nuclear C*-algebras

Theorem /Definition (Choi-Effros '78; Kirchberg '77)

A separable C*-algebra A is nuclear iff there exists a sequence of
finite-dimensional C*-algebras (F,)nen and completely positive
contractive (cpc) maps ¥, : A — F, and ¢, : F, — A such that
llon © ¥n(a) — a|| — 0 for all a € A.

We call (A Yo, F, 2o A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

< /W\ /w\ /

All the information about A is contained in this system of
approximations. But how can we read it off?




Nuclear C*-algebras

Theorem /Definition (Choi-Effros '78; Kirchberg '77)

A separable C*-algebra A is nuclear iff there exists a sequence of
finite-dimensional C*-algebras (F,)nen and completely positive
contractive (cpc) maps ¥, : A — F, and ¢, : F, — A such that
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All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?
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which is now just a closed self-adjoint subspace. How does it relate to A?
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Back to A
The (wn)n induce a complete order isomorphism W : A — | pn(Fp).
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Since any coi between C*-algebras is automatically a *-isomorphism, the
coi class of a C*-algebra captures its *-isomorphism class.

Po

Moreover, by equipping | pn(F,) with the product
V(a)eW(b) :=V(ab), V a,b e A,

we get a C*-algebra (|J pn(Fn), ), which is *-isomorphic to A.
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Nuclearity

Proposition (C.-Winter, C.)
If the limit of a finite-dimensional cpc system is coi to a C*-algebra A,
then A is nuclear.

This follows readily from Ozawa and Sato’s One-Way-CPAP, which
allows one to determine whether a given C*-algebra A is nuclear by
finding a certain family of cpc maps {¢y : Fx — A} from
finite-dimensional C*-algebras.



One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C*-algebra A is nuclear iff there exists a net () : Fx — A)aen of cpc
maps from finite-dimensional C*-algebras such that the induced cpc map

[ A — 22 (A, A)

i i satisfies Al C ¢ <(g§; g)l)

L A /@, Fr —2s € (A A) [ (A, A)




One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C*-algebra A is nuclear iff there exists a net () : Fx — A)aen of cpc
maps from finite-dimensional C*-algebras such that the induced cpc map

[ A — 22 (A, A)

l l satisfies Al C ¢ <(g§; g)l)

L A /@, Fr —2s € (A A) [ (A, A)

To get the ¢, in our case:

P1,0 P21

>F1 >F2

p2
2 \Up(m .
\UTcoi

A

Fo

0



One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C*-algebra A is nuclear iff there exists a net () : Fx — A)aen of cpc
maps from finite-dimensional C*-algebras such that the induced cpc map

[ A — 22 (A, A)

l l satisfies Al C ¢ <(g§; g)l)

L A /@, Fr —2s € (A A) [ (A, A)

To get the ¢, in our case:

P1,0 P21

>F1 >F2

p1 \LJPn(F) c 1F

PO n = &

\U—llcoi

A

Fo




One Way CPAP

Theorem (Ozawa '02, Sato '21)

A C*-algebra A is nuclear iff there exists a net () : Fx — A)aen of cpc
maps from finite-dimensional C*-algebras such that the induced cpc map

[ A — 22 (A, A)

i i satisfies Al C ¢ <(g§; g)l)

L A /@, Fr —2s € (A A) [ (A, A)

To get the ¢, in our case:
P1,0

>F1 . >F2




Back to our question

Question
Given a finite-dimensional cpc system (Fp, pni1,n)n, When is the limit

U pn(Fn) coi to a (nuclear) C*-algebra?



Back to our question

Question
Given a finite-dimensional cpc system (Fp, pni1,n)n, When is the limit

U pn(Fn) coi to a (nuclear v') C*-algebra?



NF systems (Blackadar and Kirchberg)

Definition (Blackadar—Kirchberg '97)

A finite-dimensional cpc system (Fp, pnt1.n)n is NF if it is asymptotically
multiplicative,



NF systems (Blackadar and Kirchberg)

Definition (Blackadar—Kirchberg '97)

A finite-dimensional cpc system (Fp, pnt1.n)n is NF if it is asymptotically
multiplicative, meaning that for any k > 0, x,y € Fi, and € > 0, there
exists an M > k so that for all m>n> M

1om.n (Pnk(X)Pnk(V)) = Pmk(X)pmie(¥)I| < e.



NF systems (Blackadar and Kirchberg)

Definition (Blackadar—Kirchberg '97)

A finite-dimensional cpc system (Fp, pnt1,n)n is NF if it is asymptotically
multiplicative, meaning that for any k > 0, x,y € Fi, and € > 0, there
exists an M > k so that for all m > n > M

|om,n (Pnk(X)Pnk(Y)) = Pmk(X)pmie(¥)I| < e.



NF systems (Blackadar and Kirchberg)

Definition (Blackadar—Kirchberg '97)

A finite-dimensional cpc system (Fp, pnt1.n)n is NF if it is asymptotically
multiplicative, meaning that for any k > 0, x,y € Fi, and € > 0, there
exists an M > k so that forall m>n> M

Hpm,n(pn,k(x)pn,k(y)) - pm,k(x)pm,k()/)H <e.

The limit |J pn(Fn) C g,;l is a C*-subalgebra with multiplication
J

Pk(X)pi(y) = 1im palpnk(x)pnk(¥)), k = 0,x,y € Fi.




NF systems (Blackadar and Kirchberg)

Theorem (Blackadar—Kirchberg '97)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear and quasidiagonal.

2. A is *-isomorphic to the limit of an NF system.



NF systems (Blackadar and Kirchberg)

Theorem (Blackadar—Kirchberg '97)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear and quasidiagonal.
2. A is *-isomorphic to the limit of an NF system.
Moreover, for any nuclear and QD C*-algebra A, there exists a system

(A ﬂ F, £ A)n with (1n)n approximately multiplicative so that the
induced cpc system (Fp,¥n+1 0 ©n)n is NF and its limit is *-isom to A.
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Definition (C.-Winter '23)

A finite-dimensional cpc system (Fp, ppi1,n)n is if it is
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Back to our motivating observations

(Asymptotically /Approximately) multiplicative/ order zero maps carry
significantly more structure than generic cpc maps. But these can be
hard to get our hands on.
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Systems from Fglner sequences

For a countable, discrete, amenable group I, we can use any Fglner
sequence (G,)n to construct a system of ucp approximations of C3(I):

C(r —>C,\(l' —>CA I')—>

\/\/\/
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Identifying Mg, = PnB(€2(r))Pn with Pn = projspangs,|geg,} We set
Yn(x) = PaxP, for x € C3(T) € B(€3(T))
and
(Pn(eg,h) = ﬁ)‘gh—l
where {e; 4 | g, h € Go} C Mg, are the matrix units.
Proposition (C.)
If T has a non-torsion element (e.g. ' = Z), then the maps (¢,), will be

neither approximately multiplicative nor approximately order zero, and
the resulting cpc system (Mg, , ¥n+1 © @n)n will neither be NF nor CPC*.
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Back to our motivating observations

(Asymptotically /Approximately) multiplicative/ order zero maps carry
significantly more structure than generic cpc maps. But these can be
hard to get our hands on.

Though systems (A Yn, F, 2o A), of cpc approximations with (¢,)n
approximately multiplicative/ order zero are known to exist, they can be
hard to find, and many well-known systems of cpc approximations do not
produce NF or CPC*-systems.

However, we saw that any system (A LNy LN A)p of cpc
approximations produces (after possibly passing to a summable
subsystem) a cpc system (Fp, ¥nt+1 © ©n)n whose limit is completely order
isomorphic to a nuclear C*-algebra.

Question
Given a finite-dimensional cpc system (Fp, pnt1,n)n, When is the limit

U pn(Fn) coi to a (nuclear) C*-algebra?



C*-encoding systems (C.)

Definition (C."23)

A finite-dimensional cpc system (F,,,p,,JrL,,),7 is C*-encoding if for any
k>0, x,y € F, and € > 0, there exists an M > k so that for all
m>n,j>M

[0m,n (P (X)pnik(¥)) = pm(pjk(X) k()] <e.



C*-encoding systems (C.)

Definition (C."23)

A finite-dimensional cpc system (F,,,p,,+17,,),, is C*-encoding if for any
k>0, x,y € F, and € > 0, there exists an M > k so that for all
m>n,j>M

[0m,n (P (X)pnik(¥)) = pm(pjk(X) k()] <e.

The limit U pn(Fn) C gF’ is completely order isomorphic to the
- J

C*-algebra (|J pn(Fn), *) with multiplication

Pi(x)pi(y) = 1im pn(pnk(X)pnk(¥)), k = 0,x,y € Fy.



All together

Definition (Blackadar—Kirchberg '97)

A finite-dimensional cpc system (Fp, pni1,n)n is NF if
Vk>0, x,y€Fr,ande >0, M>ksothatVm>n,j>M

H/)m,n(/)nwk(X)f)n,k(Y)) - pm,k(X)pm,k(Y)H <e.
Definition (C.-Winter '23)
A finite-dimensional cpc system (Fp, ppi1,n)n is CPC* if
Vk>0, x,y€Fr,ande >0, M>ksothatVm>n,j>M
||Pm;j(1Fj)/)mfn(/’mk(x)/)n,k(Y)) - pm,k(X)/)m,k(Y)H <e.

Definition (C."23)
A finite-dimensional cpc system (Fp, pnt1,n)n is C*-encoding if
Vk>0,x,y€Fr,ande>0,3M>ksothatVm>n,j>M

om0 (Pnk ()P0 i(v)) = Pmij(Pik ()i (W) < e
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2. A is coi to the limit of a C*-encoding system.



C*-encoding systems

Theorem (C. '23)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear.

2. A is coi to the limit of a C*-encoding system.

Moreover, for any nuclear C*-algebra A and any* system

(A Yo, F, 2o A), of cpc approximations of A the induced cpc system
(Fn,®¥nt1 0 @n)n is C*-encoding and its limit is coi to A.

Lafter possibly passing to a summable subsystem— same for NF and CPC*



C*-encoding systems

Theorem (C. '23)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear.

2. A is coi to the limit of a C*-encoding system.

Moreover, for any nuclear C*-algebra A and any* system

(A Yo, F, 2o A), of cpc approximations of A the induced cpc system
(Fn,®¥nt1 0 @n)n is C*-encoding and its limit is coi to A.

Theorem (C.-Winter '23 (via Brown—Carrién-White))
The following are equivalent for a separable C*-algebra A:
1. A nuclear.
2. Ais coi to the limit of a CPC*-system.

Lafter possibly passing to a summable subsystem— same for NF and CPC*



C*-encoding systems

Theorem (C. '23)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear.

2. A is coi to the limit of a C*-encoding system.

Moreover, for any nuclear C*-algebra A and any* system

(A Yo, F, 2o A), of cpc approximations of A the induced cpc system
(Fn,®¥nt1 0 @n)n is C*-encoding and its limit is coi to A.

Theorem (C.-Winter '23 (via Brown—Carrién-White))
Moreover, for any nuclear C*-algebra A, there exists a system

(A Yn,y Fn £ A), with (1), approximately order zero so that the
induced cpc system (Fp,n+1 0 @n)n is CPC* and its limit is coi to A.

Lafter possibly passing to a summable subsystem— same for NF and CPC*



C*-encoding systems

Theorem (C. '23)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear.

2. A is coi to the limit of a C*-encoding system.

Moreover, for any nuclear C*-algebra A and any* system

(A Yo, F, 2o A), of cpc approximations of A the induced cpc system
(Fn,®¥nt1 0 @n)n is C*-encoding and its limit is coi to A.

Theorem (C.-Winter '23 (via Brown—Carrién-White))

Moreover, for any nuclear C*-algebra A, there exists a system

(AL F, 2 A, so that the
induced cpc system (Fp,n+1 0 @n)n is CPC* and its limit is coi to A.

Lafter possibly passing to a summable subsystem— same for NF and CPC*
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C*-encoding systems

Example

Any NF system is C*-encoding and (C.-Winter) has a CPC*-subsystem.
(C.) Any CPC*-system has a C*-encoding subsystem.

Question
Given a finite-dimensional cpc system (Fp, pnt1,n)n, When is the limit

U pn(Fn) coi to a (nuclear) C*-algebra?

Theorem (C. '23)

For a finite-dimensional cpc system (Fp, pp+1,n)n, the following are
equivalent

1. The limit is coi to a C*-algebra.
2. The limit is coi to a nuclear C*-algebra. (CW, OS)

3. The system has a C*-encoding subsystem.



Thank you.



Explicit example: C%(Z)

For G = Z and Fglner sets ({0, ...,n — 1}),, we have Mg, = M, with
matrix units {e,-’j},f’;:lo. Then for each n

. . a0 a—1 a_(n—1)
o ag a1 a_p "
J— . . _ El ap
Un Z aXe | =val | L . . =T
keZ . . . ’ .
T ap a ao . an—1 ao

and QD,,(E,'J) = %)\,'_j.



Explicit example: C%(Z)

For G = Z and Fglner sets ({0, ...,n — 1}),, we have Mg, = M, with

matrix units {e,-,j},f’;:lo. Then for each n

. . a0 a—1

. EN a_1 a_» .
n § akAk = wn a ag a_y = a-l .ao
kEZ . . S

and QD,,(E,'J) = %)\,'_j.
For m > n > 0 the compositions pp, , are given on matrix units by

pmn eI,J <H1n+k> J

where S,, € M, is the shift.

a_(n—1)



Summability
A system of c.p.c. approximations (A Yo, F, 25 A), of a separable C*-algebra
A is summable if there exists a decreasing sequence (g,) € (*(N)! so that
lon — ©m o Pm o | < e, for all m>n>0.
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A system of c.p.c. approximations (A Yo, F, 25 A), of a separable C*-algebra
A is summable if there exists a decreasing sequence (g,) € ¢*(N)} so that
lon — ©m o Pm o | < e, for all m>n>0.
We will call a Fglner sequence (G,), for a discrete group G summable if there
exists a decreasing sequence (g,) € (*(N)! so that for all m > n >0

(1 |Gm N gh™ G|
|Gl
One sub-Fglner sequence of ({0, ..., n}), for Z making the system of cpc

approximations from before summable (for £, = 2™1) is given by Gy = {0} and
G, =A{0,...,2"|G,_1|} for n > 1.
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Summability

A system of c.p.c. approximations (A Yo, F, 25 A), of a separable C*-algebra
A is summable if there exists a decreasing sequence (g,) € ¢*(N)} so that
lon — ©m o Pm o | < e, for all m>n>0.

We will call a Fglner sequence (G,), for a discrete group G summable if there
exists a decreasing sequence (g,) € (*(N)! so that for all m > n >0

-1
max (1 — —lgm Mgh gm|
g.h€G, |Gml

One sub-Fglner sequence of ({0, ..., n}), for Z making the system of cpc
approximations from before summable (for £, = 2™1) is given by Gy = {0} and
Gn=10,...,2"|G,_1|} for n > 1. Then we have

(Gl — IK]
1G]

for n > k > 0 where Sig | € Mg | is the shift. A few iterations yields

-1 ..
1 T 1Gnik| = |7 = J si=i §, ..
pm,n(ei,j): H— |Gl orm>n20,0§l,1§n.
k=1

) |Gn| < em-

ea(¥n(Ak)) = ¢n(SiG,)) Ak

|Gnl |Gnkl



