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Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

All the information about A is contained in this system of
approximations.

But how can we read it off? Without using A?



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive
contractive (cpc) maps ψn : A → Fn and φn : Fn → A such that
∥φn ◦ ψn(a)− a∥ → 0 for all a ∈ A.

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ρ1,0

φ0 φ1

ρ2,1

φ2

All the information about A is contained in this system of
approximations. But how can we read it off? Without using A?



Forming the limit



Forming the limit with ∗-homomorphisms

Suppose the ρn+1,n were ∗-homomorphisms. Then these induce
∗-homomorphisms ρn : Fn →

∏
Fj/

⊕
Fj with ρn(x) = [(ρm,n(x))m>n].

A A A . . . A

F0 F1 F2 . . .

⋃
ρn(Fn)

∏
Fj⊕
Fj

id

ψ0

id

ψ1 ψ2

Ψ
Ψ

∗-isom
ρ1,0

∗-hom

φ0

ρ0

ρ2,1

φ1

∗-hom

ρ1

φ2

ρ2

⊆

The limit of the system (Fn, ρn+1,n)n is the C∗-subalgebra

lim−→(Fn, ρn+1,n) :=
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj
.

which is now just a closed self-adjoint subspace. How does it relate to A?
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Back to A

The (ψn)n induce a cpc map Ψ : A →
∏

Fj/
⊕

Fj .
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φ0
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ρ2,1

φ1

ρ1

φ2

ρ2

⊆

Ψ is isometric since (ψn)n are approx isometric

Ψ(A) =
⋃
ρn(Fn) if (A

ψn−→ Fn
φn−→ A)n is summable

Ψ is a ∗-homomorphism if (ψn)n are approx mult

⇝ Ψ : A →
⋃
ρn(Fn) is a complete order isomorphism (coi).

∥ψn(a)∥ −−−→
n→∞

∥a∥, ∀ a ∈ A
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A nuclear C∗-algebra from a cpc system

Somehow this system (Fn, ψn+1 ◦ φn)n produced, not a C∗-algebra, but a
space completely order isomorphic to a nuclear C∗-algebra.

Definition
We call a sequence of C∗-algebras (An)n together with cpc connecting
maps ρn+1,n : An → An+1 a cpc system, denoted (An, ρn+1,n)n. When
the An are all finite-dimensional, we call the system finite-dimensional.

In one sense this is a special case of Blackadar and Kirchberg’s Generalized
Inductive Systems. In another sense, it is a generalization.

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?
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Nuclearity

Proposition (C.–Winter, C.)

If the limit of a finite-dimensional cpc system is coi to a C∗-algebra A,
then A is nuclear.

This follows readily from Ozawa and Sato’s One-Way-CPAP, which
allows one to determine whether a given C∗-algebra A is nuclear by
finding a certain family of cpc maps {φλ : Fλ → A}λ from
finite-dimensional C∗-algebras.
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One Way CPAP

Theorem (Ozawa ’02, Sato ’21)

A C∗-algebra A is nuclear iff there exists a net (φλ : Fλ → A)λ∈Λ of cpc
maps from finite-dimensional C∗-algebras such that the induced cpc map∏

λ Fλ ℓ∞(Λ,A)

∏
λ Fλ/

⊕
λ Fλ

ℓ∞(Λ,A)/c0(Λ,A)

(φλ)λ

Φ

satisfies A1 ⊂ Φ

((∏
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λ Fλ

)1)
.

To get the φn in our case:

F0 F1 F2 . . .

⋃
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∏
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NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg ’97)

A finite-dimensional cpc system (Fn, ρn+1,n)n is NF if it is asymptotically
multiplicative,

meaning that for any k ≥ 0, x , y ∈ Fk , and ε > 0, there
exists an M > k so that for all m > n > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

Think of this as saying that for m > n > M, the maps ρm,n become more
multiplicative on ρn,k(x) and ρn,k(y).

ρm,n
(
ρn,k(x)ρn,k(y)

)
− ∥ρm,n

(
ρn,k(x)

)
ρm,n

(
ρn,k(y)

)
∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

is a C∗-subalgebra with multiplication

ρk(x)ρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), k ≥ 0, x , y ∈ Fk .
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NF systems (Blackadar and Kirchberg)

Theorem (Blackadar–Kirchberg ’97)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear and quasidiagonal.

2. A is ∗-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C∗-algebra A, there exists a system

(A
ψn−→ Fn

φn−→ A)n with (ψn)n approximately multiplicative so that the
induced cpc system (Fn, ψn+1 ◦ φn)n is NF and its limit is ∗-isom to A.
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Nuclear non-QD C∗-algebras

This result covers many interesting examples of separable nuclear
C∗-algebras,

but many others are not QD, e.g. Kirchberg algebras or any
nuclear C∗-algebra with a proper isometry.

To drop quasidiagonality, we must relax the asympototic multiplicativity
assumption.

And the expectation that the limit is a C∗-subalgebra of
∏

Fj/
⊕

Fj

A natural step down comes from order zero maps.

Proposition (Winter–Zacharias ’09)

Let A and B be C∗-algebras with A unital. A cp map φ : A → B is order
zero iff φ(a)φ(b) = φ(1A)φ(ab) for all a, b ∈ A.

Note that a unital cp order zero map is automatically a ∗-homomorphism.
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CPC∗-systems (C.–Winter)

Definition (C.–Winter ’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is CPC∗ if it is
asymptotically order zero, meaning that for any k ≥ 0, x , y ∈ Fk , and
ε > 0, there exists an M > k so that for all m > n, j > M

∥ρm,j(1Fj
)ρm,n

(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

The limit
⋃
ρn(Fn) ⊂
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Fj

is completely order isomorphic to the

C∗-algebra
⋃
ρn(Fn), r) with multiplication
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NF and CPC∗-systems

Theorem (C.–Winter ’23 (via Brown–Carrión–White))

The following are equivalent for a separable C∗-algebra A:

1. A nuclear.

2. A is coi to the limit of a CPC∗-system.

Moreover, for any nuclear C∗-algebra A, there exists a system

(A
ψn−→ Fn

φn−→ A)n with (ψn)n approximately order zero so that the
induced cpc system (Fn, ψn+1 ◦ φn)n is CPC∗ and its limit is coi to A.
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induced cpc system (Fn, ψn+1 ◦ φn)n is NF and its limit is ∗-isom to A.
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Systems from Følner sequences
For a countable, discrete, amenable group Γ, we can use any Følner
sequence (Gn)n to construct a system of ucp approximations of C∗

λ(Γ):

C∗
λ(Γ) C∗

λ(Γ) C∗
λ(Γ) . . .

MG0 MG1 MG2 . . .

id

ψ0

id

ψ1

id

ψ2φ0

ψ1◦φ0

φ1

ψ2◦φ1

φ2

Identifying MGn
∼= PnB(ℓ

2(Γ))Pn with Pn = projspan{δg |g∈Gn}, we set

ψn(x) = PnxPn for x ∈ C∗
λ(Γ) ⊂ B(ℓ2(Γ))

and
φn(eg ,h) =

1
|Fn|λgh−1

where {eg ,h | g , h ∈ Gn} ⊂ MGn are the matrix units. e.g. Γ = Z

Proposition (C.)

If Γ has a non-torsion element (e.g. Γ = Z), then the maps (ψn)n will be
neither approximately multiplicative nor approximately order zero
The resulting cpc system will neither be NF nor CPC∗.
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Back to our motivating observations
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Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?
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C∗-encoding systems (C.)

Definition (C.’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is C∗-encoding if for any
k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k so that for all
m > n, j > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,j

(
ρj ,k(x)ρj ,k(y)

)
∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

is completely order isomorphic to the

C∗-algebra (
⋃
ρn(Fn), r) with multiplication

ρk(x) rρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), k ≥ 0, x , y ∈ Fk .
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All together

Definition (Blackadar–Kirchberg ’97)
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C∗-encoding systems

Theorem (C. ’23)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear.

2. A is coi to the limit of a C∗-encoding system.

Moreover, for any nuclear C∗-algebra A and any system

(A
ψn−→ Fn

φn−→ A)n of cpc approximations of A the induced cpc system
(Fn, ψn+1 ◦ φn)n is C∗-encoding and its limit is coi to A.

Theorem (C.–Winter ’23 (via Brown–Carrión–White))

The following are equivalent for a separable C∗-algebra A:

1. A nuclear.

2. A is coi to the limit of a CPC∗-system.
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C∗-encoding systems

Example

Any NF system is C∗-encoding and (C.–Winter) has a CPC∗-subsystem.

(C.) Any CPC∗-system has a C∗-encoding subsystem.

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?

Theorem (C. ’23)

For a finite-dimensional cpc system (Fn, ρn+1,n)n, the following are
equivalent

1. The limit is coi to a C∗-algebra.

2. The limit is coi to a nuclear C∗-algebra. (CW, OS)

3. The system has a C∗-encoding subsystem.
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Thank you.



Explicit example: C∗
λ(Z)

For G = Z and Følner sets ({0, ..., n − 1})n, we have MGn = Mn with
matrix units {ei ,j}n−1

i ,j=0. Then for each n

ψn

(∑
k∈Z

akλk

)
= ψn





. . .
. . .

. . .
. . .

. . .

. . . a0 a−1 a−2

. . .

. . . a1 a0 a−1

. . .

. . . a2 a1 a0

. . .

. . .
. . .

. . .
. . .

. . .



 =


a0 a−1 . . . a−(n−1)

a1 a0 . . .

.

.

.

.

.

.
. . .

. . .
.
.
.

an−1 . . . . . . a0

 .

and φn(ei,j) =
1
nλi−j . back

For m > n ≥ 0 the compositions ρm,n are given on matrix units by

ρm,n(ei,j) =
1

n

(
m−1∏
k=1

1− |i − j |
n + k

)
S i−j
m ,

where Sn ∈ Mn is the shift.
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Summability
A system of c.p.c. approximations (A

ψn−→ Fn
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