

Generalized inductive limits of C^* -algebras

Kristin Courtney

based in part on joint work with W. Winter
and with N. Galke, L. van Luijk, and A. Stottmeister

GPOTS 2024

Inductive limits of C^* -algebras

An **inductive system** of C^* -algebras is a sequence $(A_n)_n$ of C^* -algebras together with coherent connecting $*$ -homomorphisms $\rho_{m,n} : A_n \rightarrow A_m$

$$\begin{array}{ccccccc} & & \rho_{2,0} & & & & \\ & & \swarrow & & \searrow & & \\ A_0 & \xrightarrow{\rho_{1,0}} & A_1 & \xrightarrow{\rho_{2,1}} & A_2 & \longrightarrow & \dots \end{array}$$

For each $k \geq 0$ and $a \in A_k$, we get a norm-bounded sequence

$$(\rho_{n,k}(a))_n \in \prod_n A_n.$$

The quotient map $\prod_n A_n \rightarrow \prod A_n / \bigoplus A_n$ induces $*$ -homomorphisms $\rho_k : A_k \rightarrow \prod A_n / \bigoplus A_n$ for each $k \geq 0$ by

$$\rho_k(a) = [(\rho_{n,k}(a))_n], \quad \forall a \in A_k.$$

The **inductive limit** of the system $(A_n, \rho_{m,n})$ is the C^* -algebra

$$\varinjlim(A_n, \rho_{m,n}) := \overline{\bigcup_k \rho_k(A_k)} \subset \prod A_n / \bigoplus A_n.$$

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Definition

A C^* -algebra is **Approximately Finite Dimensional (AF)** if it is $*$ -isomorphic to the inductive limit of finite-dimensional C^* -algebras.

Example

The compact operators

$$\mathbb{C} \longrightarrow M_2 \xleftarrow{a \mapsto a \oplus 0} M_3 \longrightarrow M_4 \longrightarrow \dots \longrightarrow \mathcal{K}(\ell^2)$$

The CAR algebra:

$$\mathbb{C} \longrightarrow M_2 \xleftarrow{a \mapsto a \oplus a} M_4 \longrightarrow M_8 \longrightarrow \dots \longrightarrow M_{2^\infty}$$

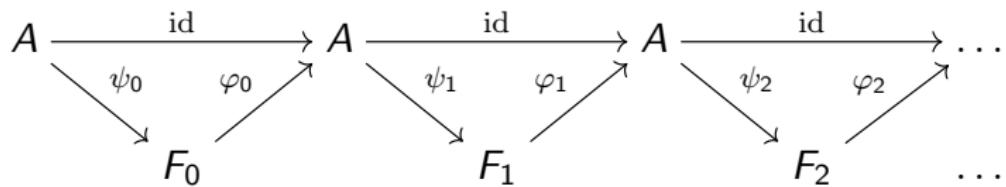
Nuclear C^* -algebras

Theorem/Definition (Choi–Effros '78; Kirchberg '77)

A separable C^* -algebra A is nuclear iff there exists a sequence of finite-dimensional C^* -algebras $(F_n)_{n \in \mathbb{N}}$ and completely positive contractive (cpc) maps $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ such that for all $a \in A$

$$\|\varphi_n(\psi_n(a)) - a\| \rightarrow 0.$$

We often think of a sequence of approximately commuting diagrams.



We call $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ a system of cpc approximations of A .

Example

Any AF C^* -algebra is nuclear. But most nuclear C^* -algebras are not AF.

More?

To build more nuclear C^* -algebras as inductive limits, one route is to make the building blocks more sophisticated:

Definition

A C^* -algebra is **Approximately (Sub)Homogeneous (A(S)H)** if it is $*$ -isomorphic to the inductive limit of (sub)homogeneous C^* -algebras.

Another route is to make the maps $\rho_{m,n} : A_n \rightarrow A_m$ less rigid.

More?

To build more nuclear C^* -algebras as inductive limits, one route is to make the building blocks more sophisticated:

Definition

A C^* -algebra is **Approximately (Sub)Homogeneous (A(S)H)** if it is $*$ -isomorphic to the inductive limit of (sub)homogeneous C^* -algebras.

Another route is to make the maps $\rho_{m,n} : A_n \rightarrow A_m$ less rigid.

More?

To build more nuclear C^* -algebras as inductive limits, one route is to make the building blocks more sophisticated:

Definition

A C^* -algebra is **Approximately (Sub)Homogeneous (A(S)H)** if it is $*$ -isomorphic to the inductive limit of (sub)homogeneous C^* -algebras.

Another route is to make the maps $\rho_{m,n} : A_n \rightarrow A_m$ less rigid.

(Sub)homogeneous means $\cong \bigoplus_{k=1}^m M_{n_k}(C_0(X_k))$.

Generalized inductive limits

Definition (Blackadar-Kirchberg)

A **generalized inductive system** $(A_n, \rho_{m,n})$ consists of a sequence $(A_n)_n$ of C^* -algebras and coherent maps $\rho_{m,n} : A_n \rightarrow A_m$ that are

1. Pointwise bounded: $\sup_m \|\rho_{m,n}(x)\| < \infty$, $\forall n \geq 0, x \in A_n$,
2. Asymptotically $*$ -linear, and
3. Asymptotically multiplicative:

For any $\varepsilon > 0$, $k \geq 0$, $x, y \in A_k$, there exists $M > k$ such that for all $m > n > M$

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

Think of this as saying that the maps $\rho_{m,n}$ become more multiplicative on $\rho_{n,k}(x)$ and $\rho_{n,k}(y)$.

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,n}(\rho_{n,k}(x))\rho_{m,n}(\rho_{n,k}(y))\| < \varepsilon.$$

Generalized inductive limits

We form the limit in the same way:

Just as before we have induced maps $\rho_k : A_k \rightarrow \prod A_n / \bigoplus A_n$, now bounded and $*$ -linear, given by $\rho_k(x) = [(\rho_{m,k}(x))]$.

$$\begin{array}{ccccccc} A_0 & \xrightarrow{\rho_{1,0}} & A_1 & \xrightarrow{\rho_{2,1}} & A_2 & \longrightarrow & \dots \\ & \searrow & \curvearrowright & \curvearrowright & \curvearrowright & & \\ & & \rho_0 & \rho_1 & \rho_2 & & \\ & & & & & \nearrow & \\ & & & & & \overline{\bigcup \rho_n(A_n)} & \subseteq \frac{\prod A_n}{\bigoplus A_n} \end{array}$$

The limit, $\varinjlim(A_n, \rho_{m,n}) := \overline{\bigcup \rho_n(A_n)}$, is a closed self adjoint subspace, and is moreover closed w.r.t. multiplication: indeed for $n \geq 0, x, y \in A_k$,

$$\rho_k(x)\rho_k(y) = \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$$

And hence the limit is a C^* -algebra.

MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras.
2. There exists a $*$ -isomorphic embedding $A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$ for some sequence $(k_n)_n$.
3. A admits norm microstates.

Definition

A separable C^* -algebra is called **MF** if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C^* -algebra is MF.
2. $C_r^*(\Gamma)$ where $\Gamma = \mathbb{F}_2$ (Haagerup–Thorbjørnsen), $\Gamma = G_1 * G_2$ with G_i MF (Hayes), $\Gamma = G_1 *_H G_2$ with G_i amenable (Schafhauser), $\Gamma = G \rtimes \mathbb{F}$ with G amenable (Rainone–Schafhauser), $\Gamma = \text{limit group}$ (Loud–Magee), $\Gamma = \text{right-angle Artin group}$ (Magee–Thomas).

MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras.
2. There exists a $*$ -isomorphic embedding $A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$ for some sequence $(k_n)_n$.
3. A admits norm microstates.

Definition

A separable C^* -algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C^* -algebra is MF.
2. $C_r^*(\Gamma)$ where $\Gamma = \mathbb{F}_2$ (Haagerup–Thorbjørnsen), $\Gamma = G_1 * G_2$ with G_i MF (Hayes), $\Gamma = G_1 *_H G_2$ with G_i amenable (Schafhauser), $\Gamma = G \rtimes \mathbb{F}$ with G amenable (Rainone–Schafhauser), $\Gamma =$ limit group (Loud–Magee), $\Gamma =$ right-angle Artin group (Magee–Thomas).

MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras.
2. There exists a $*$ -isomorphic embedding $A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$ for some sequence $(k_n)_n$.
3. A admits norm microstates.

Definition

A separable C^* -algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C^* -algebra is MF.
2. $C_r^*(\Gamma)$ where $\Gamma = \mathbb{F}_2$ (Haagerup–Thorbjørnsen), $\Gamma = G_1 * G_2$ with G_i MF (Hayes), $\Gamma = G_1 *_H G_2$ with G_i amenable (Schafhauser), $\Gamma = G \rtimes \mathbb{F}$ with G amenable (Rainone–Schafhauser), $\Gamma =$ limit group (Loud–Magee), $\Gamma =$ right-angle Artin group (Magee–Thomas).

MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras.
2. There exists a $*$ -isomorphic embedding $A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$ for some sequence $(k_n)_n$.
3. A admits norm microstates.

Definition

A separable C^* -algebra is called **MF** if it satisfies any of the above.

Example

1. $A = C^*(x_1, \dots, x_s)$ ($x_i = x_i^*$) admits norm microstates if for every finite set Γ Any separable quasidiagonal (QD) C^* -algebra is MF, there exist $n \in \mathbb{N}$ and self-adjoint matrices $X_1, \dots, X_s \in M_n$ such that $\max_{i=1}^s \|G_i(x_1, \dots, x_s)\| \leq \varepsilon$.
2. $C_r(\Gamma)$ where $\Gamma = \mathbb{F}_2$ (Haagerup–Thorbjørnsen), $\Gamma = G_1 * G_2$ with G_i MF (Hayes), $\Gamma = \max_{i=1}^s \|G_i(x_1, \dots, x_s)\| \leq \|G_i(x_1, \dots, x_s)\| \leq \varepsilon$.
 $\Gamma = G \rtimes \mathbb{F}$ with G amenable (Rainone–Schafhauser), $\Gamma = \text{limit group}$ (Louder–Magee), $\Gamma = \text{right-angle Artin group}$ (Magee–Thomas).

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called NF if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called NF if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called NF if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called NF if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called **NF** if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system of finite-dimensional C^* -algebras with cpc connecting maps.
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called NF if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 & \dots \\ F_0 & & F_1 & & F_2 & & \dots \end{array}$$

Proposition (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to A .

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ & \searrow \psi_0 & \nearrow \varphi_0 & \searrow \psi_1 & \nearrow \varphi_1 & \searrow \psi_2 & \nearrow \varphi_2 \\ & F_0 & & F_1 & & F_2 & \dots \end{array}$$

Proposition (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to A .

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 & \dots \\ F_0 & \xrightarrow{\psi_1 \circ \varphi_0} & F_1 & \xrightarrow{\psi_2 \circ \varphi_1} & F_2 & & \dots \end{array}$$

Proposition (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to A .

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 & \dots \\ F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & & \dots \end{array}$$

Proposition (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to A .

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \searrow \psi_0 & \nearrow \varphi_0 & \searrow \psi_1 & \nearrow \varphi_1 & \searrow \psi_2 & \nearrow \varphi_2 & \dots \\ F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & & \dots \end{array}$$

Proposition (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to an "amenable" subsystem of approximations (which one can always do) so that $\lim_{m \gg n} \|\rho_{m,n} - \psi_m \circ \varphi_n\| = 0$.

From CPAP to an NF system

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:

$$\begin{array}{ccccccc} A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & A & \xrightarrow{\text{id}} & \dots \\ \psi_0 \searrow & \nearrow \varphi_0 & & \psi_1 \searrow & \nearrow \varphi_1 & \psi_2 \searrow & \nearrow \varphi_2 \\ & F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{2,1}} & F_2 & \dots \end{array}$$

Theorem (BK, C.)

Taking $\rho_{m,n} = \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n$ gives rise to[†] an NF system iff the ψ_n are approximately multiplicative.

And the limit is isomorphic to A via $a \mapsto [(\psi_n(a))_n]$.

More nuclear C^* -algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^* -algebra A :

1. A can be written as the limit of a generalized inductive system (called an **NF system**, of finite-dimensional C^* -algebras with $\rho_{m,n}$ cpc).
2. A is nuclear and MF.
3. A is nuclear and QD.
4. A admits a system of completely positive approximations $(A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A)_n$ with ψ_n approximately multiplicative.

Definition

A separable C^* -algebra is called **NF** if it satisfies any of the above.

Example

$C_r^*(\Gamma)$ where Γ is any discrete amenable group (Tikuisis–White–Winter).
Any ASH C^* -algebra (BK)

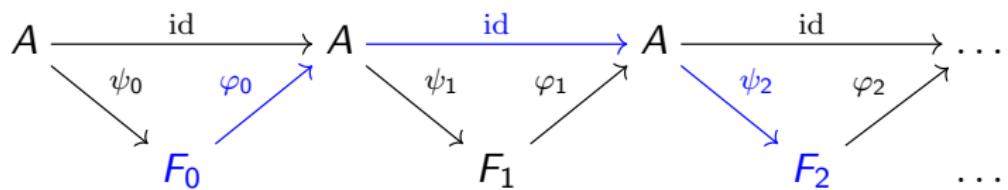
Soft Inductive Systems

Definition (van Luijk–Stottmeister–Werner, 23)

A **soft inductive sequence of C^* -algebras** consists of a sequence of C^* -algebras $(A_n)_n$ with *asymptotically coherent ucp* $\rho_{m,n} : A_n \rightarrow A_m$.

Example

Given a system $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of cpc approximations of a nuclear C^* -algebra A , $(A_n, \psi_m \circ \varphi_n)$ forms a soft inductive system.



The sequences are easier to build, but the limits of finite-dimensional systems are still NF.

QDQ

Definition

A C^* -algebra is (stably) finite if it (and any matrix amplification) contains no proper isometry, i.e., $x^*x = 1 \neq xx^*$.

Exercise

Any QD C^* -algebra (in fact any MF algebra) is stably finite.

Remark

That means no infinite (= not finite) C^ -algebra (like \mathcal{O}_n , \mathcal{T} , many graph C^* -algebras, etc.) can be NF or even MF.*

Question (QDQ)

Are all stably finite nuclear C^ -algebras NF?*

Inductive systems beyond stably finite

To go beyond stable finiteness, we need to drop asymptotic multiplicativity.

Consider a sequence $(A_n)_n$ of C^* -algebras with coherent cpc connecting maps $\rho_{m,n} : A_n \rightarrow A_m$. We can still form the limit as before:

$$\begin{array}{ccccccc} A_0 & \xrightarrow{\rho_{1,0}} & A_1 & \xrightarrow{\rho_{2,1}} & A_2 & \longrightarrow & \dots \\ & \searrow & \curvearrowright & \curvearrowright & \curvearrowright & & \\ & & \rho_0 & \rho_1 & \rho_2 & & \\ & & & & & \xrightarrow{\quad} & \overline{\bigcup \rho_n(A_n)} \subseteq \frac{\prod A_n}{\bigoplus A_n} \end{array}$$

But now the limit, $\varinjlim(A_n, \rho_{m,n}) := \overline{\bigcup \rho_n(A_n)}$ is only an operator system.

Question

When is the limit a C^ -algebra?*

Define "is"

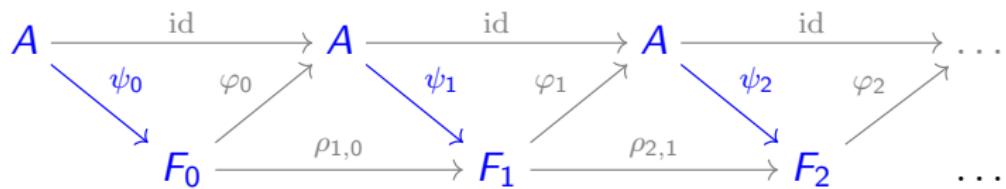
We say an operator system \mathcal{S} is a C^* -algebra if it is **completely order isomorphic** to a C^* -algebra, i.e., there exists a C^* -algebra A and a completely isometric cp map $\varphi : A \rightarrow \mathcal{S}$ with cp inverse.

Remark

1. *We can define a product on \mathcal{S} by $\varphi(x) \bullet \varphi(y) := \varphi(xy)$ with respect to which \mathcal{S} becomes a C^* -algebra.*
2. *A complete order isomorphic between two C^* -algebras is automatically a $*$ -isomorphism.*

Example from CPAP

Recall that a system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a nuclear C^* -algebra A yields a sequence of approximately commuting diagrams:



The map $\Psi : A \rightarrow \prod A_n / \bigoplus A_n$ given by

$$a \mapsto [(\psi_n(a))_n]$$

is a complete order isomorphism onto its image.

A non-example

Given a sequence of C^* -algebras $(A_n)_n$ with cpc connecting maps $\rho_{m,n} : A_n \rightarrow A_m$, the limit may not be a C^* -algebra:

Example (Han–Paulsen, C.–Galke–van Luijk–Stottmeister)

The coherent system $(M_n, \rho_{m,n})$ with $\rho_{n+1,n}(y) = y \oplus y_{11}$ converges to the operator system

$$\mathcal{S} = \overline{\text{span}}\{I, E_{i,j} \mid (i,j) \neq (1,1)\} \subset B(\ell^2(\mathbb{N})),$$

which is not completely order isomorphic to a C^* -algebra.

Beyond Asymptotic Multiplicativity

Let $(A_n)_n$ be a sequence of C^* -algebras with coherent cpc maps $\rho_{m,n} : A_n \rightarrow A_m$.

Definition (C.)

The system is C^* -encoding if for any $k \geq 0$, $x, y \in A_k$,

$$\lim_{m \gg n, j} \|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| = 0.$$

This also guarantees that the $\lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$ exists.

This limit still gives a product on the limit $\overline{\bigcup \rho_n(A_n)}$:

$$\rho_k(x) \bullet \rho_k(y) := \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)).$$

And this product still makes $\overline{\bigcup \rho_n(A_n)}$ a C^* -algebra,

which is completely order isomorphic to $\overline{\bigcup \rho_n(A_n)}$.

Beyond Asymptotic Multiplicativity

Let $(A_n)_n$ be a sequence of C^* -algebras with coherent cpc maps $\rho_{m,n} : A_n \rightarrow A_m$.

Definition (C.)

The system is C^* -encoding if for any $k \geq 0$, $x, y \in A_k$,

$$\lim_{m \gg n, j} \|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| = 0.$$

This also guarantees that the $\lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$ exists.

This limit still gives a product on the limit $\overline{\bigcup \rho_n(A_n)}$:

$$\rho_k(x) \bullet \rho_k(y) := \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)).$$

And this product still makes $\overline{\bigcup \rho_n(A_n)}$ a C^* -algebra,

which is completely order isomorphic to $\overline{\bigcup \rho_n(A_n)}$.

Beyond Asymptotic Multiplicativity

Let $(A_n)_n$ be a sequence of C^* -algebras with coherent cpc maps $\rho_{m,n} : A_n \rightarrow A_m$.

Definition (C.)

The system is C^* -encoding if for any $k \geq 0$, $x, y \in A_k$,

$$\lim_{m \gg n, j} \|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| = 0.$$

This also guarantees that the $\lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$ exists.

This limit still gives a product on the limit $\overline{\bigcup \rho_n(A_n)}$:

Though it may no longer equal $\rho_k(x) \bullet \rho_k(y) := \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$.

And this product still makes $\overline{\bigcup \rho_n(A_n)}$ a C^* -algebra,

which is completely order isomorphic to $\overline{\bigcup \rho_n(A_n)}$.

Beyond Asymptotic Multiplicativity

Let $(A_n)_n$ be a sequence of C^* -algebras with coherent cpc maps $\rho_{m,n} : A_n \rightarrow A_m$.

Definition (C.)

The system is C^* -encoding if for any $k \geq 0$, $x, y \in A_k$,

$$\lim_{m \gg n, j} \|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| = 0.$$

This also guarantees that the $\lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$ exists.

This limit still gives a product on the limit $\overline{\bigcup \rho_n(A_n)}$:

$$\rho_k(x) \bullet \rho_k(y) := \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)).$$

And this product still makes $\overline{\bigcup \rho_n(A_n)}$ a C^* -algebra,

which is completely order isomorphic to $\overline{\bigcup \rho_n(A_n)}$.

Beyond Asymptotic Multiplicativity

Let $(A_n)_n$ be a sequence of C^* -algebras with coherent cpc maps $\rho_{m,n} : A_n \rightarrow A_m$.

Definition (C.)

The system is C^* -encoding if for any $k \geq 0$, $x, y \in A_k$,

$$\lim_{m \gg n, j} \|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,j}(\rho_{j,k}(x)\rho_{j,k}(y))\| = 0.$$

This also guarantees that the $\lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y))$ exists.

This limit still gives a product on the limit $\overline{\bigcup \rho_n(A_n)}$:

$$\rho_k(x) \bullet \rho_k(y) := \lim_n \rho_n(\rho_{n,k}(x)\rho_{n,k}(y)).$$

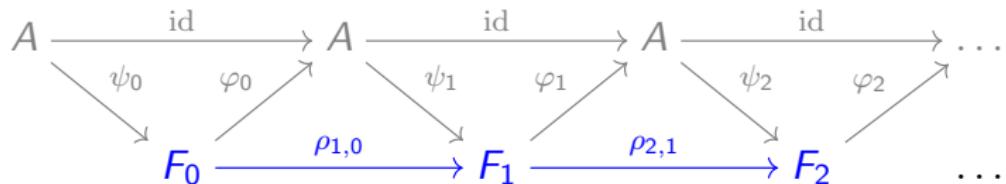
And this product still makes $\overline{\bigcup \rho_n(A_n)}$ a C^* -algebra,
it just might not be the same product as $\prod A_n / \bigoplus A_n$.

which is completely order isomorphic to $\overline{\bigcup \rho_n(A_n)}$.

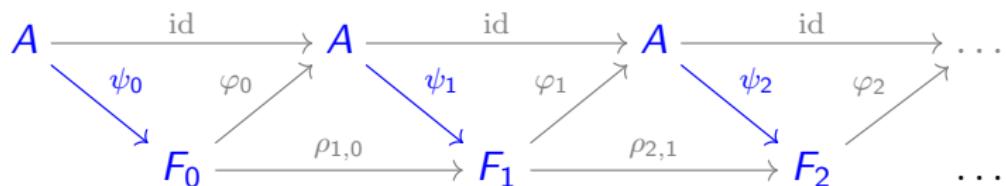
From CPAP to a C^* -encoding system

Theorem (C.)

Any[†] system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a separable nuclear C^* -algebra A gives rise to a C^* -encoding system $(F_n, \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n)$.



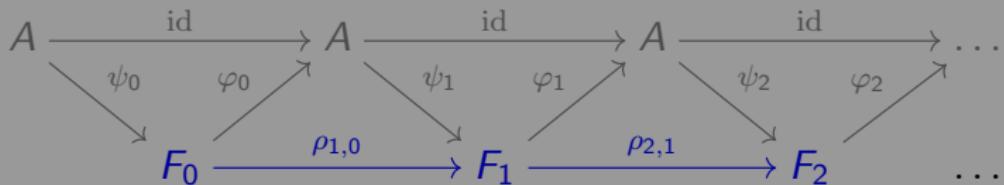
And the limit is completely order isomorphic to A via $a \mapsto [(\psi_n(a))_n]$.



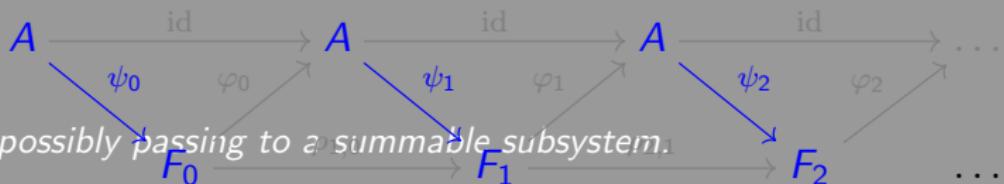
From CPAP to a C^* -encoding system

Theorem (C.)

Any[†] system of cpc approximations $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a separable nuclear C^* -algebra A gives rise to a C^* -encoding system $(F_n, \psi_m \circ \varphi_{m-1} \circ \dots \circ \varphi_n)$.



And the limit is completely order isomorphic to A via $a \mapsto [(\psi_n(a))_n]$.



Example $C_r^*(\mathbb{Z})$

Given a Følner sequence $(\mathcal{F}_n)_n$ for \mathbb{Z} , we have have a system of cpc approximations $C_r^*(\mathbb{Z}) \xrightarrow{\psi_n} M_{|\mathcal{F}_n|}(\mathbb{C}) \xrightarrow{\varphi_n} C_r^*(\mathbb{Z})$ with

$$\psi_n \left(\sum_{k \in \mathbb{Z}} a_k \lambda_k \right) = \psi_n \left(\begin{bmatrix} & & & & & \\ & \ddots & & & & \\ & & \ddots & & & \\ & & & \ddots & & \\ & & & & \ddots & \\ & & a_0 & a_{-1} & a_{-2} & \\ & & a_1 & a_0 & a_{-1} & \\ & & a_2 & a_1 & a_0 & \\ & & \ddots & \ddots & \ddots & \\ & & & & & \ddots \end{bmatrix} \right) = \begin{bmatrix} a_0 & a_{-1} & \cdots & a_{-(n-1)} \\ a_1 & a_0 & \cdots & \\ \vdots & \vdots & \ddots & \\ a_{n-1} & \cdots & \cdots & a_0 \end{bmatrix}.$$

$$\text{and } \varphi_n(e_{i,j}) = \frac{1}{|\mathcal{F}_n|} \lambda_{i-j}.$$

When $(\mathcal{F}_n)_n$ is "summable" we get a C^* -encoding system by composing:

$$\rho_{m,n}(e_{i,j}) = \frac{1}{|\mathcal{F}_n|} \prod_{k=1}^{m-1} \frac{|\mathcal{F}_{n+k}| - |i-j|}{|\mathcal{F}_{n+k}|} S_{|\mathcal{F}_n|}^{i-j}.$$

Nuclearity and C^* -encoding systems

So any separable nuclear C^* -algebra is the limit of a finite-dimensional C^* -encoding system. And the converse holds too:

Theorem (Ozawa–Sato, C.–Winter, C.)

Let $(F_n, \rho_{m,n})$ be a finite-dimensional C^ -encoding system. Then the limit is completely order isomorphic to a nuclear C^* -algebra.*

Corollary (C.)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear.*
2. *A is completely order isomorphic to the limit of a C^* -encoding system.*

Nuclearity and C^* -encoding systems

So any separable nuclear C^* -algebra is the limit of a finite-dimensional C^* -encoding system. And the converse holds too:

Theorem (Ozawa–Sato, C.–Winter, C.)

Let $(F_n, \rho_{m,n})$ be a finite-dimensional C^ -encoding system. Then the limit is completely order isomorphic to a nuclear C^* -algebra.*

Corollary (C.)

The following are equivalent for a separable C^ -algebra A :
That includes the infinite ones.*

1. *A is nuclear.*
2. *A is completely order isomorphic to the limit of a C^* -encoding system.*

[Back to the question](#)

Question

Given a sequence $(A_n)_n$ of C^ -algebras and cpc connecting maps $\rho_{m,n} : A_n \rightarrow A_m$, when is the limit completely order isomorphic to a C^* -algebra?*

Necessity and Sufficiency

Theorem (C.)

Let $(F_n)_n$ be a sequence of finite-dimensional C^* -algebras with coherent cpc connecting maps $\rho_{m,n} : F_n \rightarrow F_m$. TFAE:

1. The system has a C^* -encoding subsystem.
2. The limit is completely order isomorphic to a C^* -algebra.
3. The limit is completely order isomorphic to a nuclear C^* -algebra.

Remark

In spirit, (the proof of) this and the previous theorem establish a 1-1 correspondence between systems of cpc approximations and finite-dimensional C^* -encoding systems.

Nuclear Operator Systems

Definition/Theorem (Han–Paulsen)

A separable operator system \mathcal{S} is **nuclear** iff there exists a sequence $(k_n)_n$ and cpc maps $\mathcal{S} \xrightarrow{\psi_n} M_{k_n} \xrightarrow{\varphi_n} \mathcal{S}$ such that $\varphi_n \circ \psi_n \rightarrow \text{id}_{\mathcal{S}}$ pointwise in order norm.

Theorem (Han–Paulsen)

The operator system

$$\mathcal{S}_0 = \overline{\text{span}}\{I, E_{i,j} \mid (i,j) \neq (1,1)\} \subset B(\ell^2(\mathbb{N}))$$

is nuclear and not completely order isomorphic to a C^ -algebra.*

Nuclear Operator Systems that are C^* -algebras

Theorem (C.-Galke–van Luijk–Stottmeister)

Let \mathcal{S} be a separable operator system. Then the following are equivalent.

1. \mathcal{S} is nuclear and completely order isomorphic to a C^* -algebra.
2. \mathcal{S} is completely order isomorphic to the limit of a finite-dimensional C^* -encoding system.

Non-example

Example (C.-Galke– van Luijk–Stottmeister, Han–Paulsen)

The system $(M_n, \rho_{m,n})_n$ with

$$\rho_{n+1,n}(y) = y \oplus y_{11}$$

is not C^* -encoding. Moreover, it has no C^* -encoding subsystem, and hence its limit,

$$\mathcal{S}_0 = \overline{\text{span}}\{I, E_{i,j} \mid (i,j) \neq (1,1)\} \subset B(\ell^2(\mathbb{N})),$$

is not completely order isomorphic to a C^* -algebra.

Epilogue: CPC*-systems

Definition (C.-Winter)

Let $(A_n)_n$ be a sequence of unital C^* -algebras with cpc maps $\rho_{m,n} : A_n \rightarrow A_m$. We say $(A_n, \rho_{m,n})$ is a CPC*-system if the maps are coherent and asymptotically order zero.

Theorem (C.-Winter)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear.*
2. *A is completely order isomorphic to the limit of a CPC*-system.*

Epilogue: CPC*-systems

Definition (C.-Winter)

Let $(A_n)_n$ be a sequence of unital C^* -algebras with cpc maps $\rho_{m,n} : A_n \rightarrow A_m$. We say $(A_n, \rho_{m,n})$ is a **CPC*-system** if the maps are coherent and asymptotically order zero.

Theorem (C.-Winter)

The following are equivalent for a separable C^ -algebra A :*

1. A is nuclear.
- [Winter–Zacharias] A cp map $\psi : A \rightarrow B$ from a unital C^* -algebra is order zero iff $\psi(A)$ is completely order isomorphic to the limit of a CPC*-system.

Thank you!