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Inductive limits of C∗-algebras

An inductive system of C∗-algebras is a sequence (An)n of C∗-algebras
together with coherent connecting ∗-homomorphisms ρm,n : An → Am

A0 A1 A2 . . .
ρ1,0

ρ2,0

ρ2,1

For each k ≥ 0 and a ∈ Ak , we get a norm-bounded sequence

(ρn,k(a))n ∈
∏

n An.

The quotient map
∏

n An →
∏

An/
⊕

An induces ∗-homomorphisms
ρk : Ak →

∏
An/

⊕
An for each k ≥ 0 by

ρk(a) =
[
(ρn,k(a))n

]
, ∀ a ∈ Ak .

The inductive limit of the system (An, ρm,n) is the C∗-algebra

lim−→(An, ρm,n) :=
⋃

k ρk(Ak) ⊂
∏

An/
⊕

An.



Inductive limits of C∗-algebras

This inductive limit construction has provided many interesting examples
of C∗-algebras, in particular, the AF algebras.

Definition
A C∗-algebra is Approximately Finite Dimensional (AF) if it is
∗-isomorphic to the inductive limit of finite-dimensional C∗-algebras.

Example

The compact operators

C M2 M3 M4 ... K(ℓ2)
a 7→a⊕0

The CAR algebra:

C M2 M4 M8 ... M2∞
a 7→a⊕a



Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive

contractive (cpc) maps A
ψn−→ Fn

φn−→ A such that for all a ∈ A

∥φn

(
ψn(a)

)
− a∥ → 0.

We often think of a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

Example

Any AF C∗-algebra is nuclear. But most nuclear C∗-algebras are not AF.



More?

To build more nuclear C∗-algebras as inductive limits, one route is to
make the building blocks more sophistocated:

Definition
A C∗-algebra is Approximately (Sub)Homogeneous (A(S)H) if it is
∗-isomorphic to the inductive limit of (sub)homogeneous C∗-algebras.

(Sub)homogeneous means ∼=
⊕m

k=1 Mnk (C0(Xk)).

Another route is to make the maps ρm,n : An → Am less rigid.
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Generalized inductive limits

Definition (Blackadar-Kirchberg)

A generalized inductive system (An, ρm,n) consists of a sequence (An)n of
C∗-algebras and coherent maps ρm,n : An → Am that are

1. Pointwise bounded: supm ∥ρm,n(x)∥ <∞, ∀ n ≥ 0, x ∈ An,

2. Asymptotically ∗-linear, and

3. Asymptotically multiplicative:
For any ε > 0, k ≥ 0, x , y ∈ Ak , there exists M > k such that for
all m > n > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

Think of this as saying that the maps ρm,n become more multiplicative on
ρn,k(x) and ρn,k(y).

∥ρm,n

(
ρn,k(x)ρn,k(y)

)
− ρm,n

(
ρn,k(x)

)
ρm,n

(
ρn,k(y)

)
∥ < ε.



Generalized inductive limits

We form the limit in the same way:

Just as before we have induced maps ρk : Ak →
∏

An/
⊕

An, now bounded
and ∗-linear, given by ρk(x) = [(ρm,k(x))].

A0 A1 A2 . . .

⋃
ρn(An)

∏
An⊕
An

ρ1,0ρ1,0

ρ0

ρ2,1

ρ1

ρ2

⊆

The limit, lim−→(An, ρm,n) :=
⋃
ρn(An), is a closed self adjoint subspace,

and is moreover closed w.r.t. multiplication: indeed for n ≥ 0, x , y ∈ Ak ,

ρk(x)ρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y))

And hence the limit is a C∗-algebra.



MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system of
finite-dimensional C∗-algebras.

2. There exists a ∗-isomorphic embedding A ↪→
∏

Mkn/
⊕

Mkn for some
sequence (kn)n.

3. A admits norm microstates.

A = C∗(x1, ..., xs) (xi = x∗i ) admits norm microstates if for every finite set
F of noncommutative polynomials in s variables and ε > 0, there exist
n ∈ N and self-adjoint matrices X1, ...,Xs ∈ Mn such that

max
P∈F

∣∣ ∥P(x1, ..., xs)∥ − ∥P(X1, ...,Xs)∥
∣∣ < ε.

Definition
A separable C∗-algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C∗-algebra is MF.

2. C∗
r (Γ) where Γ = F2 (Haagerup–Thorbjørnsen), Γ = G1 ∗ G2 with Gi

MF (Hayes), Γ = G1 ∗H G2 with Gi amenable (Schafhauser),
Γ = G ⋊F with G amenable (Rainone–Schafhauser), Γ = limit group
(Louder–Magee), Γ = right-angle Artin group (Magee–Thomas).



MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system of
finite-dimensional C∗-algebras.

2. There exists a ∗-isomorphic embedding A ↪→
∏

Mkn/
⊕

Mkn for some
sequence (kn)n.

3. A admits norm microstates.

A = C∗(x1, ..., xs) (xi = x∗i ) admits norm microstates if for every finite set
F of noncommutative polynomials in s variables and ε > 0, there exist
n ∈ N and self-adjoint matrices X1, ...,Xs ∈ Mn such that

max
P∈F

∣∣ ∥P(x1, ..., xs)∥ − ∥P(X1, ...,Xs)∥
∣∣ < ε.

Definition
A separable C∗-algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C∗-algebra is MF.

2. C∗
r (Γ) where Γ = F2 (Haagerup–Thorbjørnsen), Γ = G1 ∗ G2 with Gi

MF (Hayes), Γ = G1 ∗H G2 with Gi amenable (Schafhauser),
Γ = G ⋊F with G amenable (Rainone–Schafhauser), Γ = limit group
(Louder–Magee), Γ = right-angle Artin group (Magee–Thomas).



MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system of
finite-dimensional C∗-algebras.

2. There exists a ∗-isomorphic embedding A ↪→
∏

Mkn/
⊕

Mkn for some
sequence (kn)n.

3. A admits norm microstates.

A = C∗(x1, ..., xs) (xi = x∗i ) admits norm microstates if for every finite set
F of noncommutative polynomials in s variables and ε > 0, there exist
n ∈ N and self-adjoint matrices X1, ...,Xs ∈ Mn such that

max
P∈F

∣∣ ∥P(x1, ..., xs)∥ − ∥P(X1, ...,Xs)∥
∣∣ < ε.

Definition
A separable C∗-algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C∗-algebra is MF.

2. C∗
r (Γ) where Γ = F2 (Haagerup–Thorbjørnsen), Γ = G1 ∗ G2 with Gi

MF (Hayes), Γ = G1 ∗H G2 with Gi amenable (Schafhauser),
Γ = G ⋊F with G amenable (Rainone–Schafhauser), Γ = limit group
(Louder–Magee), Γ = right-angle Artin group (Magee–Thomas).



MF Algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system of
finite-dimensional C∗-algebras.

2. There exists a ∗-isomorphic embedding A ↪→
∏

Mkn/
⊕

Mkn for some
sequence (kn)n.

3. A admits norm microstates.

A = C∗(x1, ..., xs) (xi = x∗i ) admits norm microstates if for every finite set
F of noncommutative polynomials in s variables and ε > 0, there exist
n ∈ N and self-adjoint matrices X1, ...,Xs ∈ Mn such that

max
P∈F

∣∣ ∥P(x1, ..., xs)∥ − ∥P(X1, ...,Xs)∥
∣∣ < ε.

Definition
A separable C∗-algebra is called MF if it satisfies any of the above.

Example

1. Any separable quasidiagonal (QD) C∗-algebra is MF.

2. C∗
r (Γ) where Γ = F2 (Haagerup–Thorbjørnsen), Γ = G1 ∗ G2 with Gi

MF (Hayes), Γ = G1 ∗H G2 with Gi amenable (Schafhauser),
Γ = G ⋊F with G amenable (Rainone–Schafhauser), Γ = limit group
(Louder–Magee), Γ = right-angle Artin group (Magee–Thomas).



More nuclear C∗-algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system of
finite-dimensional C∗-algebras with cpc connecting maps.

2. A is nuclear and MF.

3. A is nuclear and QD.

4. A admits a system of completely positive approximations

(A
ψn−→ Fn

φn−→ A)n with ψn approximately multiplicative.

∥ψn(ab)− ψn(a)ψn(b)∥ → 0, ∀ a, b ∈ A.

Definition
A separable C∗-algebra is called NF if it satisfies any of the above.

Example

C∗
r (Γ) where Γ is any discrete amenable group (Tikuisis–White–Winter).

Any ASH C∗-algebra (BK)
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From CPAP to an NF system

Recall that a system of cpc approximations A
ψn−→ Fn

φn−→ A of a nuclear
C∗-algebra A yields a sequence of approximately commuting diagrams:

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

Proposition (BK, C.)

Taking ρm,n = ψm ◦ φm−1 ◦ . . . ◦ φn gives† an NF system iff the ψn are
approximately multiplicative.

And the limit is isomorphic to A.
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More nuclear C∗-algebras

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A can be written as the limit of a generalized inductive system
(called an NF system, of finite-dimensional C∗-algebras with ρm,n
cpc.

2. A is nuclear and MF.

3. A is nuclear and QD.

4. A admits a system of completely positive approximations

(A
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Soft Inductive Systems

Definition (van Luijk–Stottmeister–Werner, 23)

A soft inductive sequence of C∗-algebras consists of a sequence of
C∗-algebras (An)n with asymptotically coherent ucp ρm,n : An → Am.

Example

Given a system A
ψn−→ Fn

φn−→ A of cpc approximations of a nuclear
C∗-algebra A, (An, ψm ◦ φn) forms a soft inductive system.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

The sequences are easier to build, but the limits of finite-dimensional
systems are still NF.



QDQ

Definition
A C∗-algebra is (stably) finite if it (and any matrix amplification)
contains no proper isometry, i.e., x∗x = 1 ̸= xx∗.

Exercise
Any QD C∗-algebra (in fact any MF algebra) is stably finite.

Remark
That means no infinite (= not finite) C∗-algebra (like On, T , many graph
C∗-algebras, etc.) can be NF or even MF.

Question (QDQ)

Are all stably finite nuclear C∗-algebras NF?



Inductive systems beyond stably finite

To go beyond stable finiteness, we need to drop asymptotic
multiplicativity.

Consider a sequence (An)n of C∗-algebras with coherent cpc connecting
maps ρm,n : An → Am. We can still form the limit as before:

A0 A1 A2 . . .

⋃
ρn(An)

∏
An⊕
An

ρ1,0ρ1,0

ρ0

ρ2,1

ρ1

ρ2

⊆

But now the limit, lim−→(An, ρm,n) :=
⋃
ρn(An) is only an operator system.

Question
When is the limit a C∗-algebra?



Define ”is”

We say an operator system S is a C∗-algebra if it is completely order
isomorphic to a C∗-algebra, i.e., there exists a C∗-algebra A and a
completely isometric cp map φ : A → S with cp inverse.

Remark

1. We can define a product on S by φ(x) rφ(y) := φ(xy) with respect
to which S becomes a C∗-algebra.

2. A complete order isomorphic between two C∗-algebras is
automatically a ∗-isomorphism.



Example from CPAP

Recall that a system of cpc approximations A
ψn−→ Fn

φn−→ A of a nuclear
C∗-algebra A yields a sequence of approximately commuting diagrams:

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ρ1,0

φ0 φ1

ρ2,1

φ2

The map Ψ : A →
∏

An/
⊕

An given by

a 7→ [(ψn(a))n]

is a complete order isomorphism onto its image.



A non-example

Given a sequence of C∗-algebras (An)n with cpc connecting maps
ρm,n : An → Am, the limit may not be a C∗-algebra:

Example (Han–Paulsen, C.–Galke–van Luijk–Stottmeister)

The coherent system (Mn, ρm,n) with ρn+1,n(y) = y ⊕ y11 converges to
the operator system

S = span{I ,Ei ,j | (i , j) ̸= (1, 1)} ⊂ B(ℓ2(N)),

which is not completely order isomorphic to a C∗-algebra.



Beyond Asymptotic Multiplicativity

Let (An)n be a sequence of C∗-algebras with coherent cpc maps
ρm,n : An → Am.

Definition (C.)

The system is C∗-encoding if for any k ≥ 0, x , y ∈ Ak ,

lim
m>>n,j

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,j

(
ρj ,k(x)ρj ,k(y)

)
∥ = 0.

This also guarantees that the limn ρn(ρn,k(x)ρn,k(y)) exists.

Though it may no longer equal ρk(x)ρk(y).

This limit still gives a product on the limit
⋃
ρn(An):

ρk(x) rρk(y) := limn ρn(ρn,k(x)ρn,k(y)).

It just might not be the same product as
∏

An/
⊕

An.

And this product still makes
⋃
ρn(An) a C∗-algebra,

which is completely order isomorphic to
⋃
ρn(An).
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It just might not be the same product as
∏

An/
⊕

An.

And this product still makes
⋃
ρn(An) a C∗-algebra,

which is completely order isomorphic to
⋃
ρn(An).



Beyond Asymptotic Multiplicativity

Let (An)n be a sequence of C∗-algebras with coherent cpc maps
ρm,n : An → Am.

Definition (C.)

The system is C∗-encoding if for any k ≥ 0, x , y ∈ Ak ,

lim
m>>n,j

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,j

(
ρj ,k(x)ρj ,k(y)

)
∥ = 0.

This also guarantees that the limn ρn(ρn,k(x)ρn,k(y)) exists.

Though it may no longer equal ρk(x)ρk(y).

This limit still gives a product on the limit
⋃
ρn(An):

ρk(x) rρk(y) := limn ρn(ρn,k(x)ρn,k(y)).

It just might not be the same product as
∏

An/
⊕

An.
And this product still makes

⋃
ρn(An) a C∗-algebra,

which is completely order isomorphic to
⋃
ρn(An).



From CPAP to a C∗-encoding system

Theorem (C.)

Any† system of cpc approximations A
ψn−→ Fn

φn−→ A of a separable nuclear
C∗-algebra A gives rise to a C∗-encoding system (Fn, ψm ◦φm−1 ◦ . . . φn).

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ρ1,0

φ0 φ1

ρ2,1

φ2

† After possibly passing to a summable subsystem.

And the limit is completely order isomorphic to A via a 7→ [(ψn(a))n].

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ρ1,0

φ0 φ1

ρ2,1

φ2
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Example C∗
r (Z)

Given a Følner sequence (Fn)n for Z, we have have a system of cpc

approximations C∗
r (Z)

ψn−→ M|Fn|(C)
φn−→ C∗

r (Z) with

ψn

(∑
k∈Z

akλk

)
= ψn





. . .
. . .

. . .
. . .

. . .

. . . a0 a−1 a−2

. . .

. . . a1 a0 a−1

. . .

. . . a2 a1 a0

. . .

. . .
. . .

. . .
. . .

. . .



 =


a0 a−1 . . . a−(n−1)

a1 a0 . . .

.

.

.

.

.

.
. . .

. . .
.
.
.

an−1 . . . . . . a0

 .

and φn(ei,j) =
1

|Fn|λi−j .

When (Fn)n is ”summable” we get a C∗-encoding system by composing:

ρm,n(ei,j) =
1

|Fn|

m−1∏
k=1

|Fn+k | − |i − j |
|Fn+k |

S i−j
|Fn|.



Nuclearity and C∗-encoding systems

So any separable nuclear C∗-algebra is the limit of a finite-dimensional
C∗-encoding system.

That includes the infinite ones.

And the converse holds too:

Theorem (Ozawa–Sato, C.–Winter, C.)

Let (Fn, ρm,n) be a finite-dimensional C∗-encoding system. Then the
limit is completely order isomorphic to a nuclear C∗-algebra.

Corollary (C.)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear.

2. A is completely order isomorphic to the limit of a C∗-encoding
system.
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Back to the question

Question
Given a sequence (An)n of C∗-algebras and cpc connecting maps
ρm,n : An → Am, when is the limit completely order isomorphic to a
C∗-algebra?



Necessity and Sufficiency

Theorem (C.)

Let (Fn)n be a sequence of finite-dimensional C∗-algebras with coherent
cpc connecting maps ρm,n : Fn → Fm. TFAE:

1. The system has a C∗-encoding subsystem.

2. The limit is completely order isomorphic to a C∗-algebra.

3. The limit is completely order isomorphic to a nuclear C∗-algebra.

Remark
In spirit, (the proof of) this and the previous theorem establish a 1-1
correspondence between systems of cpc approximations and
finite-dimensional C∗-encoding systems.



Nuclear Operator Systems

Definition/Theorem (Han–Paulsen)

A separable operator system S is nuclear iff there exists a sequence (kn)n

and cpc maps S ψn−→ Mkn
φn−→ S such that φn ◦ ψn → idS pointwise in

order norm.

Theorem (Han–Paulsen)

The operator system

S0 = span{I ,Ei ,j | (i , j) ̸= (1, 1)} ⊂ B(ℓ2(N))

is nulear and not completely order isomorphic to a C∗-algebra.



Nuclear Operator Systems that are C∗-algebras

Theorem (C.–Galke–van Luijk–Stottmeister)

Let S be a separable operator system. Then the following are equivalent.

1. S is nuclear and completely order isomorphic to a C∗-algebra.

2. S is completely order isomorphic to the limit of a finite-dimensional
C∗-encoding system.



Non-example

Example (C.–Galke– van Luijk–Stottmeister, Han–Paulsen)

The system (Mn, ρm,n)n with

ρn+1,n(y) = y ⊕ y11

is not C∗-encoding. Moreover, it has no C∗-encoding subsystem, and
hence its limit,

S0 = span{I ,Ei ,j | (i , j) ̸= (1, 1)} ⊂ B(ℓ2(N)),

is not not completely order isomorphic to a C∗-algebra.



Epilogue: CPC∗-systems

Definition (C.–Winter)

Let (An)n be a sequence of unital C∗-algebras with cpc maps
ρm,n : An → Am. We say (An, ρm,n) is a CPC∗-system if the maps are
coherent and asymptotically order zero.

[Winter–Zacharias] A cp map ψ : A → B from a unital C∗-algebra is order zero
iff ψ(a)ψ(b) = ψ(1)ψ(ab) for all a, b ∈ A.

Theorem (C.–Winter)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear.

2. A is completely order isomorphic to the limit of a CPC∗-system.
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Thank you!


