

A von Neumann-type inequality with universal C^* -algebras

Kristin Courtney

University of Virginia

JMM 2018, San Diego

von Neumann's Inequality

Theorem (von Neumann, 1951)

Let T be an operator on a Hilbert space with $\|T\| \leq 1$. Then for any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z \in \overline{\mathbb{D}}} |p(z)|,$$

where \mathbb{D} denotes the unit disk of \mathbb{C} .

von Neumann's Inequality

Theorem (von Neumann, 1951)

Let T be an operator on a Hilbert space with $\|T\| \leq 1$. Then for any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z \in \overline{\mathbb{D}}} |p(z)|,$$

where \mathbb{D} denotes the unit disk of \mathbb{C} .

Theorem (Andô, 1963)

Let T_1 and T_2 be commuting contractions on a Hilbert space, and let $p \in \mathbb{C}[z_1, z_2]$ be a polynomial in two variables. Then

$$\|p(T_1, T_2)\| \leq \sup_{z_1, z_2 \in \overline{\mathbb{D}}} |p(z_1, z_2)|.$$

A $*$ -polynomial analogue?

Can we have a similar inequality if p were replaced with a non-commutative $*$ -polynomial? For example,

$$q(x) = xx^* - x^*x.$$

A $*$ -polynomial analogue?

Can we have a similar inequality if p were replaced with a non-commutative $*$ -polynomial? For example,

$$q(x) = xx^* - x^*x.$$

To help us see what would be an appropriate analogue, let's first rephrase the original inequality in terms of a universal contraction operator.

Universal Contraction C^* -algebra

We denote the universal unital C^* -algebra generated by a contraction by

$$C_u^* \langle x : \|x\| \leq 1 \rangle.$$

Universal Contraction C^* -algebra

We denote the universal unital C^* -algebra generated by a contraction by

$$C_u^*\langle x : \|x\| \leq 1 \rangle.$$

It has the defining property that, given any contraction operator $y \in B(\mathcal{H})$, the assignment $x \mapsto y$ induces a surjective unital $*$ -homomorphism

$$C_u^*\langle x : \|x\| \leq 1 \rangle \rightarrow C^*(y, 1_{\mathcal{H}}).$$

Universal Contraction C^* -algebra

We denote the universal unital C^* -algebra generated by a contraction by

$$C_u^* \langle x : \|x\| \leq 1 \rangle.$$

It has the defining property that, given any contraction operator $y \in B(\mathcal{H})$, the assignment $x \mapsto y$ induces a surjective unital $*$ -homomorphism

$$C_u^* \langle x : \|x\| \leq 1 \rangle \rightarrow C^*(y, 1_{\mathcal{H}}).$$

We call the generator, as well as any image under any faithful nondegenerate representation, a universal contraction.

von Neumann's Inequality, once more

Given any contractive Hilbert space operator T , any polynomial $p \in \mathbb{C}[z]$, and a universal contraction x , we have

$$\|p(T)\| \leq \|p(x)\|.$$

von Neumann's Inequality, once more

Given any contractive Hilbert space operator T , any polynomial $p \in \mathbb{C}[z]$, and a universal contraction x , we have

$$\|p(T)\| \leq \|p(x)\|.$$

So, von Neumann's inequality can be restated as follows.

Theorem (von Neumann's Inequality)

Let x be a universal contraction operator on some Hilbert space, and let $p \in \mathbb{C}[z]$. Then,

$$\|p(x)\| = \sup_{z \in \overline{\mathbb{D}}} |p(z)|.$$

von Neumann's Inequality, once more

Given any contractive Hilbert space operator T , any polynomial $p \in \mathbb{C}[z]$, and a universal contraction x , we have

$$\|p(T)\| \leq \|p(x)\|.$$

So, von Neumann's inequality can be restated as follows.

Theorem (von Neumann's Inequality)

Let x denote the generator of $C_u^* \langle x : \|x\| \leq 1 \rangle$, and let $p \in \mathbb{C}[z]$. Then,

$$\|p(x)\| = \sup\{\|p(\pi(x))\| : \pi : C_u^* \langle x : \|x\| \leq 1 \rangle \rightarrow \mathbb{C}\}.$$

von Neumann's inequality for $*$ -polynomials

Actually, given any contractive Hilbert space operator T , any noncommutative $*$ -polynomial q , and a universal contraction x , we have

$$\|q(T)\| \leq \|q(x)\|.$$

von Neumann's inequality for $*$ -polynomials

Actually, given any contractive Hilbert space operator T , any noncommutative $*$ -polynomial q , and a universal contraction x , we have

$$\|q(T)\| \leq \|q(x)\|.$$

But the previous theorem fails for noncommutative $*$ -polynomials, such as $q(x) = xx^* - x^*x$.

von Neumann's inequality for $*$ -polynomials

Actually, given any contractive Hilbert space operator T , any noncommutative $*$ -polynomial q , and a universal contraction x , we have

$$\|q(T)\| \leq \|q(x)\|.$$

But the previous theorem fails for noncommutative $*$ -polynomials, such as $q(x) = xx^* - x^*x$.

In fact, this theorem will fail for noncommutative $*$ -polynomials if we restrict to representations of any bounded finite dimension.

von Neumann's inequality for $*$ -polynomials

Actually, given any contractive Hilbert space operator T , any noncommutative $*$ -polynomial q , and a universal contraction x , we have

$$\|q(T)\| \leq \|q(x)\|.$$

But the previous theorem fails for noncommutative $*$ -polynomials, such as $q(x) = xx^* - x^*x$.

In fact, this theorem will fail for noncommutative $*$ -polynomials if we restrict to representations of any bounded finite dimension. This follows from the fact that $C_u^*\langle x : \|x\| \leq 1 \rangle$ is not subhomogeneous.

von Neumann's inequality for $*$ -polynomials

But it is Residually Finite Dimensional (RFD), i.e. it has a separating family of finite-dimensional representations \mathcal{F} .

von Neumann's inequality for $*$ -polynomials

But it is Residually Finite Dimensional (RFD), i.e. it has a separating family of finite-dimensional representations \mathcal{F} .

So, for any noncommutative $*$ -polynomial q ,

$$\|q(x)\| = \sup_{\pi \in \mathcal{F}} \|\pi(q(x))\| = \sup_{\pi \in \mathcal{F}} \|q(\pi(x))\|.$$

von Neumann's inequality for $*$ -polynomials

But it is Residually Finite Dimensional (RFD), i.e. it has a separating family of finite-dimensional representations \mathcal{F} .

So, for any noncommutative $*$ -polynomial q ,

$$\|q(x)\| = \sup_{\pi \in \mathcal{F}} \|\pi(q(x))\| = \sup_{\pi \in \mathcal{F}} \|q(\pi(x))\|.$$

Proposition (von Neumann's Inequality for $*$ -polynomials)

Let x denote the generator of $C_u^* \langle x : \|x\| \leq 1 \rangle$, and let q be any noncommutative $*$ -polynomial. Then,

$$\|q(x)\| = \sup_n \{ \|q(a)\| : a \in M_n(\mathbb{C}), \|a\| \leq 1 \}.$$

Two Sharpenings

Two Sharpenings

Theorem (C., 2017)

Let x denote the generator of $C_u^*\langle x : \|x\| \leq 1 \rangle$, and let q be any noncommutative $*$ -polynomial with longest monomial of length ℓ . Then,

$$\|q(x)\| = \max\{\|q(a)\| : a \in M_{2^\ell}(\mathbb{C}), \|a\| \leq 1\}.$$

Two Sharpenings

Theorem (C., 2017)

Let x denote the generator of $C_u^*\langle x : \|x\| \leq 1 \rangle$, and let q be any noncommutative $*$ -polynomial with longest monomial of length ℓ . Then,

$$\|q(x)\| = \max\{\|q(a)\| : a \in M_{2\ell}(\mathbb{C}), \|a\| \leq 1\}.$$

Theorem (C., 2017)

Let x denote the generator of $C_u^*\langle x : \|x\| \leq 1 \rangle$, and let q be any noncommutative $*$ -polynomial. Then,

$$\|q(x)\| = \sup_n \{\|q(a)\| : a \in M_n(\mathbb{C}), \|a\| \leq 1, a^n = 0\}.$$

Finite-Dimensional Nilpotents

To prove that it suffices to consider finite-dimensional nilpotents, we demonstrate a separating family of finite-dimensional representations of $C_u^*\langle x : \|x\| \leq 1 \rangle$, each mapping the generator to a nilpotent operator.

Finite-Dimensional Nilpotents

To prove that it suffices to consider finite-dimensional nilpotents, we demonstrate a separating family of finite-dimensional representations of $C_u^* \langle x : \|x\| \leq 1 \rangle$, each mapping the generator to a nilpotent operator.

First, let's build the family of representations.

Universal Nilpotent Contraction C^* -algebras

We denote the universal unital C^* -algebra generated by a contraction satisfying the algebraic relation $x^n = 0$ by

$$C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle.$$

Universal Nilpotent Contraction C^* -algebras

We denote the universal unital C^* -algebra generated by a contraction satisfying the algebraic relation $x^n = 0$ by

$$C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle.$$

It has the defining property that, given any contraction operator $y \in B(\mathcal{H})$ satisfying $y^n = 0$, the assignment $x_n \mapsto y$ induces a surjective unital $*$ -homomorphism

$$C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle \rightarrow C^*(y, 1_{\mathcal{H}}).$$

Universal Nilpotent Contraction C^* -algebras

We denote the universal unital C^* -algebra generated by a contraction satisfying the algebraic relation $x^n = 0$ by

$$C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle.$$

It has the defining property that, given any contraction operator $y \in B(\mathcal{H})$ satisfying $y^n = 0$, the assignment $x_n \mapsto y$ induces a surjective unital $*$ -homomorphism

$$C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle \rightarrow C^*(y, 1_{\mathcal{H}}).$$

Theorem (Shulman, 2008)

For each $n \in \mathbb{N}$, $C_u^* \langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$ is RFD.

A family of finite-dimensional nilpotent representations

For each $n \in \mathbb{N}$, let $\{\rho_{n,k}\}_{k \in \mathbb{N}}$ be a separating family of finite-dimensional representations for $C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$, and let

$$\phi_n : C_u^*\langle x : \|x\| \leq 1 \rangle \rightarrow C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$$

be the $*$ -homomorphisms induced by mapping $x \mapsto x_n$.

A family of finite-dimensional nilpotent representations

For each $n \in \mathbb{N}$, let $\{\rho_{n,k}\}_{k \in \mathbb{N}}$ be a separating family of finite-dimensional representations for $C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$, and let

$$\phi_n : C_u^*\langle x : \|x\| \leq 1 \rangle \rightarrow C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$$

be the $*$ -homomorphisms induced by mapping $x \mapsto x_n$.

$$C_u^*\langle x : \|x\| \leq 1 \rangle$$

$$\phi_n$$

$$C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$$

$$\rho_{n,k}$$

$$C^*(\rho_{n,k}(x_n), 1_{\mathcal{H}_{\rho_{n,k}}})$$

A family of finite-dimensional nilpotent representations

For each $n \in \mathbb{N}$, let $\{\rho_{n,k}\}_{k \in \mathbb{N}}$ be a separating family of finite-dimensional representations for $C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$, and let

$$\phi_n : C_u^*\langle x : \|x\| \leq 1 \rangle \rightarrow C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle$$

be the $*$ -homomorphisms induced by mapping $x \mapsto x_n$.

$$C_u^*\langle x : \|x\| \leq 1 \rangle$$

$$\begin{array}{ccc} & \searrow \phi_n & \\ & C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle & \\ & \swarrow \rho_{n,k} & \\ & C^*(\rho_{n,k}(x_n), 1_{\mathcal{H}_{\rho_{n,k}}}) & \end{array}$$

Then $\rho_{n,k} \circ \phi_n(x) = \rho_{n,k}(x_n)$ is finite-dimensional and nilpotent for all $n, k \in \mathbb{N}$.

A separating family

It remains to show that $\{\phi_n\}$ (and hence $\{\rho_{n,k} \circ \phi_n\}$) is separating, which follows from the following theorem.

A separating family

It remains to show that $\{\phi_n\}$ (and hence $\{\rho_{n,k} \circ \phi_n\}$) is separating, which follows from the following theorem.

Theorem (C.,2017)

Any faithful, unital representation (π, \mathcal{H}) of $C_u^\langle x : \|x\| \leq 1 \rangle$ on a separable Hilbert space asymptotically factorizes through $\{\phi_n\}$.*

A separating family

It remains to show that $\{\phi_n\}$ (and hence $\{\rho_{n,k} \circ \phi_n\}$) is separating, which follows from the following theorem.

Theorem (C.,2017)

Any faithful, unital representation (π, \mathcal{H}) of $C_u^\langle x : \|x\| \leq 1 \rangle$ on a separable Hilbert space asymptotically factorizes through $\{\phi_n\}$.*

In other words, there exist $*$ -homomorphisms

$$\psi_n : C_u^*\langle x_n : \|x_n\| \leq 1, x_n^n = 0 \rangle \rightarrow B(\mathcal{H})$$

where $\psi_n \circ \phi_n \rightarrow \pi$ pointwise in norm.

A separating family

It remains to show that $\{\phi_n\}$ (and hence $\{\rho_{n,k} \circ \phi_n\}$) is separating, which follows from the following theorem.

Theorem (C.,2017)

Any faithful, nondegenerate representation (π, \mathcal{H}) of $C_u^\langle x : \|x\| \leq 1 \rangle$ on a separable Hilbert space asymptotically factorizes through $\{\phi_n\}$.*

The key is to argue that $\pi(x)$ is the norm limit of a sequence of nilpotent contractions, the proof of which relies heavily on the characterization of the norm closure of nilpotents in $B(\mathcal{H})$ due to Apostol-Foias-Voiculescu (1974).

In one variable

Proposition (von Neumann's Inequality for $*$ -polynomials)

Let T be a contractive Hilbert space operator, and q be any noncommutative $*$ -polynomial. Then,

$$\|q(T)\| \leq \sup_n \{\|q(a)\| : a \in M_n(\mathbb{C}), \|a\| \leq 1\}.$$

Theorem (C., 2017)

Let T be a contractive Hilbert space operator and q any noncommutative $*$ -polynomial. Then,

$$\|q(T)\| \leq \sup_n \{\|q(a)\| : a \in M_n(\mathbb{C}), \|a\| \leq 1, a^n = 0\}.$$

Andô's inequality for $*$ -polynomials?

Theorem (Andô, 1963)

Let T_1 and T_2 be commuting contractions on a Hilbert space, and let $p \in \mathbb{C}[z_1, z_2]$ be a polynomial in two variables. Then

$$\|p(T_1, T_2)\| \leq \sup_{z_1, z_2 \in \overline{\mathbb{D}}} |p(z_1, z_2)|.$$

Andô's inequality for $*$ -polynomials?

Theorem (Andô, 1963)

Let T_1 and T_2 be commuting contractions on a Hilbert space, and let $p \in \mathbb{C}[z_1, z_2]$ be a polynomial in two variables. Then

$$\|p(T_1, T_2)\| \leq \sup_{z_1, z_2 \in \overline{\mathbb{D}}} |p(z_1, z_2)|.$$

Can we have an analogous theorem for non-commutative $*$ -polynomials in two variables?

Doubly Commuting Contractions

For any noncommutative $*$ -polynomial q in two variables, we can try to maximize the norm of $\|q(T_1, T_2)\|$ as T_1 and T_2 range over pairs of commuting contractions.

Doubly Commuting Contractions

For any noncommutative $*$ -polynomial q in two variables, we can try to maximize the norm of $\|q(T_1, T_2)\|$ as T_1 and T_2 range over pairs of commuting contractions.

Let's just start with the "nicer" case where T_1 and T_2 range over pairs of doubly commuting contractions, i.e. $T_1 T_2 = T_2 T_1$ and $T_1 T_2^* = T_2^* T_1$.

The question(s)

Question (1)

Given any pair T_1 and T_2 of d.c. contractions on a Hilbert space and any noncommutative $$ -polynomial q in two variables, must the following inequality hold?*

$$\|q(T_1, T_2)\| \leq \sup_n \{\|q(a_1, a_2)\| : a_i \in M_n, \|a_i\| \leq 1, a_i \text{ d.c.}\}$$

The question(s)

Question (1)

Given any pair T_1 and T_2 of d.c. contractions on a Hilbert space and any noncommutative $$ -polynomial q in two variables, must the following inequality hold?*

$$\|q(T_1, T_2)\| \leq \sup_n \{\|q(a_1, a_2)\| : a_i \in M_n, \|a_i\| \leq 1, a_i \text{ d.c.}\}$$

Question (2)

Given any pair T_1 and T_2 of d.c. contractions on a Hilbert space and any noncommutative $$ -polynomial q in two variables, must the following inequality hold?*

$$\|q(T_1, T_2)\| \leq \sup_n \{\|q(a_1, a_2)\| : a_i \in M_n, \|a_i\| \leq 1, a_i \text{ d.c.}, a_i^n = 0\}$$

“Answers”

Theorem (C., 2017)

The following are equivalent

- ① *Question (1) has an affirmative answer.*
- ② *Question (2) has an affirmative answer.*
- ③ *Connes' Embedding Problem has an affirmative answer.*

In other words

Notice that Question (1) asks whether

$$C_u^* \langle x_1, x_2 : \|x_i\| \leq 1 \text{ and } x_1, x_2 \text{ d.c.} \rangle$$

is RFD.

In other words

Notice that Question (1) asks whether

$$C_u^* \langle x_1, x_2 : \|x_i\| \leq 1 \text{ and } x_1, x_2 \text{ d.c.} \rangle$$

is RFD. Question (2) asks whether its separating family of finite-dimensional representations can be chosen so that the generators map to nilpotents.

In other words

Notice that Question (1) asks whether

$$C_u^* \langle x_1, x_2 : \|x_i\| \leq 1 \text{ and } x_1, x_2 \text{ d.c.} \rangle$$

is RFD. Question (2) asks whether its separating family of finite-dimensional representations can be chosen so that the generators map to nilpotents. But

$$C_u^* \langle x_1, x_2 : \|x_i\| \leq 1 \text{ and } x_1, x_2 \text{ d.c.} \rangle$$

$$\simeq C_u^* \langle x : \|x\| \leq 1 \rangle \otimes_{max} C_u^* \langle x : \|x\| \leq 1 \rangle.$$

In other words

Theorem (Kirchberg, 1993)

*Connes Embedding Problem has an affirmative answer iff
 $C^*(\mathbb{F}_2) \otimes_{max} C^*(\mathbb{F}_2)$ is RFD.*

In other words

So, the theorem can be restated as follows.

Theorem (C., 2017)

The following are equivalent

- ① $C_u^*(x : \|x\| \leq 1) \otimes_{\max} C_u^*(x : \|x\| \leq 1)$ is RFD.
- ② $C_u^*(x : \|x\| \leq 1) \otimes_{\max} C_u^*(x : \|x\| \leq 1)$ is RFD, and its separating family of finite-dimensional representations can be chosen so that the generators map to nilpotents.
- ③ $C^*(\mathbb{F}_2) \otimes_{\max} C^*(\mathbb{F}_2)$ is RFD.

Thank you.

Some Recommended Reading

- C. Apostol, C. Foias, and D. Voiculescu. "On the norm-closure of nilpotents, II," *Rev. Roum. Math. Pures et Appl.* **19**(1974), 549-577.
- T. Fritz, T. Netzer, A. Thom, "Can you compute the operator norm?" *Proc. Amer. Math. Soc.* **142** (2014), 4265-4276.
- E. Kirchberg. "On non-semisplit extensions, tensor products and exactness of group C^* -algebras," Springer-Verlag. *Invent. math.* **112**(1993), 449-489.
- T. Loring. *Lifting Solutions to Perturbing Problems in C^* -Algebras*. Fields Institutue Monographs, 8. AMS, Providence, RI (1997).
- T. Loring and T. Shulman. "Lifting algebraic contractions in C^* -algebras," *Oper. Theory Adv. Appl.*, **233**(2014), 85-92.
- G. Popescu, "Ando dilations and inequalities on noncommutative domains," *Proc. Royal Soc. A*, to appear.
- T. Shulman, "Lifting of nilpotent contractions," *Bull. London Math. Soc.*, **40**(2008), No. 6, 1002-1006.