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Part I: Inductive limits of C∗-algebras



Inductive limits of C∗-algebras

An inductive system of C∗-algebras consists of a sequence (An)n of
C∗-algebras together with connecting ∗-homomorphisms

A0
ρ1,0−−→ A1

ρ2,1−−→ A2 → . . . .

For each k ≥ 0, the quotient map
∏

n An →
∏

n An/
⊕

n An induces a
∗-homomorphism ρk : Ak →

∏
n An/

⊕
n An by

ρk(a) := [
(
ρn,k(a)

)
n>k

)], ∀ a ∈ Ak .

The inductive limit of the system (An, ρm,n) is the C∗-algebra

A :=
⋃

k≥0 ρk(Ak) ⊂ ∏
n

An/
⊕
n

An.
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Inductive limits of C∗-algebras

This inductive limit construction has provided many interesting
examples of C∗-algebras, in particular, the AF algebras.

Definition
A C∗-algebra is Approximately Finite (AF) if it is ∗-isomorphic to
the inductive limit of finite dimensional C∗-algebras.

Example

Likely the most famous example is the CAR algebra:

M2 M4 ...
⋃∞

k=1M2k =: M2∞
a 7→a⊕a

Alternatively, an AF C∗-algebra is one that contains an ascending
sequence of finite dimensional subalgebras with norm-dense union.
This has an important von Neumann analogue.
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AFD von Neumann Algebras

Definition
A von Neumann algebra is called Approximately Finite Dimensional
(AFD) (or hyperfinite) if it contains an ascending sequence of finite
dimensional von Neumann subalgebras with weak∗-dense union.

Example

The hyperfinite II1-factor R.

M2 M4 ...
⋃∞

k=1M2k
wk∗

= Ra 7→a⊕a

There are other ways to approximate operator algebras by finite
dimensional ones.
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Semi-discrete von Neumann Algebras

Definition
A von Neumann algebra M is semi-discrete if the identity map
idM :M→M approximately factorizes though matrix algebras in
the point-weak∗ topology,

i.e., there exist completely positive unital maps

M M

Mkn

idM

ψn ϕn

with ξ(ϕn ◦ ψn(a))→ ξ(a) for all a ∈M, ξ ∈M∗.

Example

Any AFD von Neumann algebra is semi-discrete.

Theorem (Connes)

Any semi-discrete von Neumann algebra is AFD.
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Classification of von Neumann factors

One major outcome of this theorem was the Connes-Haagerup
classification of injective von Neumann factors.

Corollary (Connes, Murray-von Neumann)

The following von Neumann algebras are all ∗-isomorphic to R:

• L(Γ) for a countable ICC amenable group Γ

•
⋃∞

k=1Mnk
wk∗

for n ≥ 2.

The analogous classification of nuclear C∗-algebras is not nearly as
tidy, and was only recently completed after the work of many
hands over many years.
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Nuclear C∗-algebras

Just as AF C∗-algebras are analogous to AFD von Neumann
algebras, there is a C∗-analogue to semi-discretness.

Definition
A C∗-algebra A is nuclear if the identity map idA : A→ A
approximately factorizes though matrix algebras in the point-norm
topology, i.e., there exist completely positive contractive (cpc)
maps

A A

Mkn

idA

ψn ϕn

with ‖ϕn ◦ ψn(a)− a‖ → 0 for all a ∈ A.

Example

Any AF C∗-algebra is nuclear.
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Nuclear and AF C∗-algebras

Unlike in the von Neumann algebra setting, there are many nuclear
C∗-algebras that are not AF.

Example

• C (X ) where X is an infinite totally disconnected compact
metrizable space.

• Many C∗-algebras arising from amenable group (actions).

• Irrational Rotation algebras Aθ

• Cuntz algebras On

• Toeplitz algebra T

So, a direct analogue to Connes’ result is out of the question.

But this is neither unusal nor a deterrent.
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Part II: Generalized Inductive Limits



Generalized inductive limits

To give an inductive limit description of nuclear C∗-algebras, we
must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that
on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced
geneneralized inductive systems of C∗-algebras, where the
connecting maps only asymptotically behave like
∗-homomorphisms. They showed that the limits of such systems
form important classes of C∗-algebras.

Ignoring the full generality of their constructions, we focus on their
so-called NF systems.
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NF systems

Definition
An NF system consists of a sequence (Fn)n of finite dimensional
C∗-algebras together with asymptotically multiplicative cpc maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . .

Asymptotically multiplicative means that for any k ≥ 0, x , y ∈ Fk ,
and ε > 0, there exists an M > k such that for all m > n > M,

‖ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)‖ < ε.

Remark
The naive approach would involve ‖ρm,k(xy)− ρm,k(x)ρm,k(y)‖,
but this is places too much importance on something happening at
the kth step and is hence too restrictive.
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NF Algebras

Since this quotient only cares about what happens asymptotically,
the limit is still a C∗-algebra, which we call an NF Algebra.

Theorem (Blackadar-Kirchberg)

A separable C∗-algebra A is NF iff there exists a sequence of finite

dimensional C∗-algebras (Fn)n and cpc maps A
ψn−→ Fn

ϕn−→ A so
that for all a, b ∈ A,

‖ϕn ◦ ψn(a)− a‖ → 0,∣∣‖a‖ − ‖ψn(a)‖
∣∣→ 0, and

‖ψn(a)ψn(b)− ψn(ab)‖ → 0.

Theorem (Blackadar-Kirchberg)

A separable C∗-algebra is NF iff it is nuclear and quasidiagonal.
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Nuclear Quasidiagonal C∗-algebras

Theorem (Blackadar-Kirchberg)

A separable C∗-algebra is NF iff it is nuclear and quasidiagonal.

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)
C∗(Γ) is NF iff Γ is amenable.

Example

Infinite C∗-algebras (ones with a proper isometry) are not.

• Cuntz algebras On for n ≥ 2

• Toeplitz algebra T

How can we get an inductive limit description of these C∗-algebras?
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Nuclear C∗-algebras

To drop quasidiagonality from the inductive limits, we must relax
the asymptotically multiplicative assumption in our NF systems

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . .

But without this the inductive limit is only a closed self-adjoint
subspace of

∏
n Fn/

⊕
Fn, not an algebra.

We need to relax multiplicativity without losing the C∗-structure.
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Part III: Order Zero Maps



Completely positive order zero maps

Definition
A cp map ψ : A→ B between C∗-algebras is called order zero if it
is orthogonality preserving:

ab = 0 =⇒ ψ(a)ψ(b) = 0, ∀ a, b ∈ A+.

Example

• R+-weighted characters λπ : A→ C on a C∗-algebra A.

• For the function id : z → z in C ([0, 1]), the map

Mid : C ([0, 1])→ C ([0, 1]),

given by Mid(g)(z) = zg(z) for g ∈ C ([0, 1]) is cp order zero.

• Given a ∗-homomorphism π : A→ B between C∗-algebras and
h ∈ π(A)′ ∩ B+, the map hπ(·) : A→ B is cp order zero.
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A structure theorem for order zero maps

Theorem (Winter-Zacharias)

Every cp order zero map can be written as hπ(·) : A→ B for some
∗-homomorphism π : A→ B and h ∈ π(A)′ ∩ B+.

Corollary (Wolff, Winter-Zacharias)

Let A and B be C∗-algebras with A unital. A cp map ψ : A→ B is
order zero iff

ψ(a)ψ(b) = ψ(1A)ψ(ab), ∀ a, b ∈ A.

Remark
Note that if ψ(1A) = 1B , then ψ is a ∗-homomorphism.
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Order Zero Maps

Theorem (Wolff)

If ψ : A→ B is a cp order zero map from a unital C∗-algebra A,
then ψ(1A) ∈ ψ(A)′.

Proposition (Winter-Zacharias)

If ψ : A→ B is a cp order zero map, then so are all of its matrix
amplifications ψ(r) : Mr (A)→ Mr (B).

In other words, an order zero map is completely order zero.

Proposition

If ψ : A→ B is a cp order zero map, then ψ(A) ∩ B+ = ψ(A+).
Moreover, if a cp order zero map is invertible (on its image), its
inverse is automatically cp.One can view
(ψ(A), {Mr (ψ(A)) ∩Mr (B)+}r , ψ(1A)) as an abstract operator
system.
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Images of order zero maps

A cp order zero map leaves an impression of its structure in its
image– even to the point that we can detect when a self-adjoint
subspace of a C∗-algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a
C∗-algebra out of the image outright.

In particular, for a cpc order zero map ψ : A→ B from a unital
C∗-algebra, setting X := ψ(A) and e := ψ(1A), we have the
following:

1. [W] e ∈ X ′ ∩ X

2. [WZ] X 2 := {xy : x , y ∈ X} = {ez : z ∈ X} =: eX , and

3. for all x = x∗ ∈ X , there exists R > 0 so that Re ≥ x .
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A C∗-structure

Theorem (C.-Winter)

Let B be a C∗-algebra, X ⊂ B a closed self-adjoint subspace, and
e ∈ B1

+ a distinguished element satisfying

1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. for all x = x∗ ∈ X, there exists R > 0 so that Re ≥ x.

Then there is an associative bilinear map • : X ×X → X and norm
‖ · ‖• : X → [0,∞) so that (X , •, ‖ · ‖•) is a C∗-algebra with unit e.

We write C∗•(X ) := (X , •, ‖ · ‖•).

Theorem (C-Winter)

The map idX : C∗•(X )→ B is a cpc order zero map, which gives a
complete order isomorphism C∗•(X )←→ X. By refining 3. we can
guarantee that it is completely isometric too.
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Shorthand

For a closed self-adjoint subspace X of a C∗-algebra B with
distinguished element e ∈ B1

+, we abbreviate the criteria that gave
us a C∗-structure on X as follows:

(C∗)



1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. for all x = x∗ ∈ X , there
exists R > 0 so that Re ≥ x .

Whenever (X , e) satisfy (C∗), we can define multiplication
• : X × X → X and a C∗-norm ‖ · ‖• on (X , •), and denote the
corresponding C∗-algebra with C∗•(X ).
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Remarks

What is this C∗-algebra C∗•(X )?

If e = 1B , then X would be a C∗-subalgebra of B, and C∗•(X )
would just be X .

Otherwise, the C∗-algebra C∗•(X ) can be identified with the
enveloping C∗-algebra C∗min(X ) for the abstract operator system
(X , {Mr (X ) ∩Mr (B)+}r , e).

If (X , e) arose as the image of an injective cpc order zero map from
some unital C∗-algebra ψ : A→ B, then A ∼= C∗•(X ) ∼= C∗min(X ).

How special was e?

If h ∈ B1
+ is another element so that (X , h) also satisfy (C∗), then

the associated C∗-algebras would be unitally ∗-isomorphic.
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Part IV: Generalized NF Systems



Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative”
requirement from the NF systems:

Definition
An NF system consists of a sequence (Fn)n of finite dimensional
C∗-algebras together with asymptotically multiplicative cpc maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . .

But the issue was that, without asymptotic multiplicativity, the
limit need not be a C∗-algebra.

Now we are equipped to overcome that hurdle.
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Generalizing generalized inductive limits

Given a sequence (Fn)n of finite dimensional C∗-algebras together
cpc connecting maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . ,

we still have induced cpc maps ρk : Fk →
∏

n Fn/
⊕

n Fn =: F∞, and
we can still form the limit

X =
⋃
k

ρk(Fk) ⊂ F∞.

Though X may not be a C∗-algebra, if we can guarantee that
there some e ∈ (F∞)1

+ so that (X , e) satisfy (C∗), then it will be
completely order isomorphic to the C∗-algebra C∗•(X ) via the
injective cpc order zero map idX : C∗•(X )→ X ⊂ F∞.
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Encoding (C∗)

We say a sequence (Fn)n of finite dimensional C∗-algebras together
cpc connecting maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . ,

is a Generalized NF System if there exists a sequence
(en) ∈ (

∏
n Fn)1

+ so that (Fn, ρm,n, en) asymptotically satisfy (C∗).

This definition is build to ensure that the limit
X =

⋃
n ρn(Fn) ⊂ F∞ together with e = [(en)n)] satisfy (C∗).

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely
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Generalized NF systems from cpc approximations

Consider a cpc approximation A
ψn−→ Fn

ϕn−→ A of a unital nuclear
C∗-algebra with asymptotically order zero maps (ψn : A→ Fn)n.

(
i.e., ‖ψn(1A)ψn(ab)− ψn(a)ψn(b)‖ → 0, ∀ a, b ∈ A

)
This induces a completely isometric cp order zero map ψ : A→ F∞

A A A . . . A

F0 F1 F2 . . . F∞

id

ψ0

id

ψ1

id

ψ2
ψ

ϕ0 ϕ1 ϕ2

After passing to a subsystem, we can guarantee that
ψ(A) = lim

→
(Fn, ψm ◦ ... ◦ ϕn) =: X .

The fact that ψ is cpc order zero will imply that (X , e) satisfy
(C∗) and moreover that the system is generalized NF.
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Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have
moreover that A ∼= C∗•(X ).

Theorem (C.-Winter)

Any separable, unital, nuclear C∗-algebra is completely
isometrically completely order isomorphic to the limit of a
generalized NF system via an order zero map.

On the other hand, the limit of generalized NF system is by design
completely order isomorphic to a C∗-algebra.

Given any generalized NF system, will the associated C∗-algebra
C∗•(X ) be nuclear?
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CPAP for a generalized NF system?

C∗•(X ) C∗•(X ) C∗•(X )

X X X . . .

F0 F1 F2 . . .

idX

id

idX

id

idX

ρ1,0

ρ0 ρ1

ρ2,1

ρ2

Since id−1
X is cp, so are ϕn := id−1

X ◦ ρn.

Question
Can we come up with the downwards maps to get a completely
positive approximation?

[Winter] If we assume the upwards maps are decomposable into a
direct sum of a bounded number of cpc order zero maps, yes.
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“one-way CPAP,” which then tells us that C∗•(X )∗∗ is injective.
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Nuclear C∗-algebras from limits of generalized NF systems

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely
order isomorphic to a unital nuclear C∗-algebra C∗•(X ) via an
completely isometric cp order zero map idX : C∗•(X )→ X ⊂ F∞.



Removing quasidiagonality

Recall Blackadar and Kirchberg’s characterization of NF algebras
as the separable nuclear quasidiagonal C∗-algebras:

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear and quasidiagonal.

2. A is ∗-isomorphic to an NF algebra.

By replacing asymptotic multiplicativity with asymptotic order
zero, we can drop “quasidiagonal.”
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Thank you.



Epilogue: Technical Details



Encoding (C∗)

The task is to encode (C∗) into a system

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . .

of cpc maps between finite dimensional C∗-algebras.

We want conditions on the system which guarantee that we have
an element e ∈ (F∞)1

+ so that the limit X together with e satisfy

(C∗)


1. e ∈ X ′ ∩ X

2. X 2 = eX , and

3. e is an order unit for X .
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An approximately central order unit

To find a positive contraction e ∈ X ∩ X ′, we need a sequence
(en)n ∈

∏
n(Fn)1

+ that is

• asymptotically coherent, which guarantees that (ρn(en))n ⊂ X
is Cauchy, and

• asymptotically central, which guarantees that e := limn ρn(en)
commutes with X .

To ensure e is an order unit for X , we require that (en)n is an

• asymptotic uniform order unit, which guarantees that
‖ρn(x)‖e ≥ ρn(x) for every n ≥ 0, x = x∗ ∈ Fn.

Under these three assumptions, we get a positive contraction
e ∈ X ′ ∩ X that is an order unit for X .

Let’s call such a sequence an asymptotically central order unit.
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Asymptotically order zero

With a designated “unit,” we want our system to capture the
unital definition of order zero (ψ(a)ψ(b) = ψ(1)ψ(ab) ∀ a, b ∈ A),

which translates to X 2 = eX .

We arrange for this by requiring that our system be

• asymptotically order zero with respect to (en)n.
This condition tells us how to build, for any k ≥ 0 and
x , y ∈ Fk , an element z ∈ X =

⋃
n ρn(Fn) so that

ez = ρk(x)ρk(y).

It turns out this is enough to get X 2 = eX .

Remark
Just as with order zero maps, if these maps are asymptotically
unital (i.e. ‖en − 1Fn‖ → 0), then the resulting sequence is
asymptotically multiplicative, and we land back in the NF setting.
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Generalized NF systems
(Working title)

Definition (C.-Winter)

A generalized NF system (Fn, ρm,n, en) consists of a sequence
(Fn)n of finite dimensional C∗-algebras with cpc connecting maps

F0
ρ1,0−−→ F1

ρ2,1−−→ F2 → . . . ,

that are asymptotically order zero with respect to an
asymptotically central order unit (en)n ∈

∏
n(Fn)1

+.



One Way CPAP

Theorem (Sato, Ozawa)

A C∗-algebra is nuclear iff there exists a net (ρλ : Fλ → A)λ∈Λ of
cpc maps from finite dimensional C∗-algebras such that the
induced cpc map∏

λ Fλ `∞(Λ,A)

∏
λ Fλ/

⊕
λ Fλ

`∞(Λ,A)/c0(Λ,A)

(ρλ)λ

Φ

satisfies A1 ⊂ Φ

((∏
λ Fλ⊕
λ Fλ

)1
)

.



Theorem (C.-Winter)

Let B be a C∗-algebra, X ⊂ B a self-adjoint subspace, and e ∈ X
a distinguished element satisfying

1. 0 ≤ e ≤ 1

2. e ∈ X ′

3. X 2 = eX , and

4. e is an order unit for X ⊂ B.

Then there is an associative bilinear map • : X × X → X satisfying

xy = e(x • y) ∀ x , y ∈ X

so that (X , •) is a ∗-algebra with unit e. Moreover, there exists a
pre-C∗-norm ‖ · ‖• on (X , •).

We denote the C∗-algebra (X
‖·‖•

, •, ‖ · ‖•) by C∗•(X ).
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An associative bilinear map

Suppose X ⊂ B arises as the image of a cpc order zero map
θ : C → B from a unital C∗-algebra C .

Then the assignment

(θ(a), θ(b)) 7→ θ(ab) =: θ(a) • θ(b)

defines an associative bilinear map • : θ(C )× θ(C )→ θ(C ), which
satisfies

θ(a)θ(b) = θ(1C )θ(ab) = θ(1C )
(
θ(a) • θ(b)

)
for all θ(a), θ(b) ∈ θ(C ).

Without an order zero map, we cannot say exactly what x • y is for
x , y ∈ X , but we can still say that it exists.
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An associative bilinear map

Proposition (C.-Winter)

Let B be a C∗-algebra, X ⊂ B a closed self-adjoint subspace, and
e ∈ B1

+ a distinguished element satisfying

1. e ∈ X ′, and

2. e is an order unit for X ⊂ B.

Then for any x , y ∈ X,

1. x = y ⇔ enx = eny for some n ≥ 1,

2. x = x∗ ⇔ (ex) = (ex)∗, and

3. x ≥ 0 ⇔ ex ≥ 0,

where the multiplication is in B.
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An associative bilinear map

Let B be a C∗-algebra, X ⊂ B a self-adjoint subspace, and e ∈ X
a distinguished element satisfying

1. 0 ≤ e ≤ 1

2. e ∈ X ′

3. X 2 = eX , and

4. e is a matrix order unit for X ⊂ B.

(3)⇒ for each x , y ∈ X there exists x • y ∈ X such that

xy = e(x • y).

(1) + (2) + (4)⇒ x • y is the unique such element:

ez = xy = e(x • y)⇒ z = x • y .

And moreover this assignment defines an associative bilinear map
making (X , •) into a ∗-algebra.
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A C∗-norm

Suppose e ∈ X ⊂ B was invertible. Then we define a pre-C∗-norm
on X by

‖x‖• := ‖e−1x‖B
for x ∈ X would give us a C∗-norm with respect to •. Indeed,

‖x∗ • x‖• = ‖e−1(x∗ • x)‖B = ‖e−1e−1e(x∗ • x)‖B
= ‖e−1e−1x∗x‖B = ‖(e−1x)∗e−1x‖B
= ‖e−1x‖2

B = ‖x‖2
•.

In general e has an approximate inverse in B, i.e. a sequence
(hk(e))k∈N in B where hk ∈ C0((0, 1]) with thk(t)→ 1 pointwise.
We define our pre-C∗-norm ‖ · ‖• : X → B for each x ∈ X by

‖x‖• := lim
k
‖hk(e)x‖B .
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