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Inductive limits of C*-algebras
An inductive system of C*-algebras consists of a sequence (Ap), of
C*-algebras together with connecting *-homomorphisms

1,0 P2,1
A0—>A1—>A2—>....

For each k > 0, the quotient map [[, Ap — Il.A/@, A, induces a
*-homomorphism py : Ax — I, A/, A, by

,Ok(a) = [(pn,k(a))n>k)]7 Vae A

The inductive limit of the system (Ap, pm.n) is the C*-algebra

A= U0 Pr(Ak) C I:IAH/EPA,,.
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Inductive limits of C*-algebras

This inductive limit construction has provided many interesting
examples of C*-algebras, in particular, the AF algebras.

Definition
A C*-algebra is Approximately Finite (AF) if it is *-isomorphic to
the inductive limit of finite dimensional C*-algebras.

Example
Likely the most famous example is the CAR algebra:

a—ada 1199 N1
M2 S M4 B > o © Uk:1M2k = M2oo

Alternatively, an AF C*-algebra is one that contains an ascending
sequence of finite dimensional subalgebras with norm-dense union.
This has an important von Neumann analogue.
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AFD von Neumann Algebras

Definition

A von Neumann algebra is called Approximately Finite Dimensional
(AFD) (or hyperfinite) if it contains an ascending sequence of finite
dimensional von Neumann subalgebras with weak*-dense union.

Example
The hyperfinite II;-factor R.

a—ada —————wk*
My 25N, e o U My~ =R

There are other ways to approximate operator algebras by finite
dimensional ones.
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Definition

A von Neumann algebra M is semi-discrete if the identity map
idag 1 M — M approximately factorizes though matrix algebras in
the point-weak™ topology,

i.e., there exist completely positive unital maps

M id » M
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My,

with &(pn 0 1¥,(a)) — £(a) for all a € M, € € M,.

Example
Any AFD von Neumann algebra is semi-discrete.

Theorem (Connes)

Any semi-discrete von Neumann algebra is AFD.
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Classification of von Neumann factors

One major outcome of this theorem was the Connes-Haagerup

classification of injective von Neumann factors.

Corollary (Connes, Murray-von Neumann)

The following von Neumann algebras are all *-isomorphic to R:
e L(T) for a countable ICC amenable group T

— k*
o U M« forn>2.

The analogous classification of nuclear C*-algebras is not nearly as
tidy, and was only recently completed after the work of many
hands over many years.
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Nuclear C*-algebras

Just as AF C*-algebras are analogous to AFD von Neumann
algebras, there is a C*-analogue to semi-discretness.

Definition

A C*-algebra A is nuclear if the identity map ida: A — A
approximately factorizes though matrix algebras in the point-norm
topology, i.e., there exist completely positive contractive (cpc)
maps

A ids y A

%
My
with ||, 0 ¥p(a) — al| — 0 for all a € A.

n

Example
Any AF C*-algebra is nuclear.
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Nuclear and AF C*-algebras

Unlike in the von Neumann algebra setting, there are many nuclear
C*-algebras that are not AF.
Example

e C(X) where X is an infinite totally disconnected compact
metrizable space.

Many C*-algebras arising from amenable group (actions).

Irrational Rotation algebras Ay

Cuntz algebras O,

Toeplitz algebra T

So, a direct analogue to Connes’ result is out of the question.

But this is neither unusal nor a deterrent.
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Generalized inductive limits

To give an inductive limit description of nuclear C*-algebras, we
must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that
on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced
geneneralized inductive systems of C*-algebras, where the
connecting maps only asymptotically behave like
*~homomorphisms. They showed that the limits of such systems
form important classes of C*-algebras.

Ignoring the full generality of their constructions, we focus on their
so-called NF systems.
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NF systems

Definition
An NF system consists of a sequence (F,), of finite dimensional
C*-algebras together with asymptotically multiplicative cpc maps

£1,0 02,1
Fo«——)F14—>F2*>....

Asymptotically multiplicative means that for any kK > 0, x,y € Fy,
and € > 0, there exists an M > k such that for all m > n > M,

lpm,n (P (X)pnk(¥)) = Pk (X)Pmi(Y)I| < e.
The limit of an NF system is formed the same as before:

Uy pc(Fk) C 11 Fo/@ F, where py : Fe = 1. Fo/@ F, are the
induced cpc maps.
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Nuclear Quasidiagonal C*-algebras

Theorem (Blackadar-Kirchberg)
A separable C*-algebra is NF iff it is nuclear and quasidiagonal.

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)
C*(I') is NF iff I is amenable.

Example

Infinite C*-algebras (ones with a proper isometry) are not.
e Cuntz algebras O, for n > 2
e Toeplitz algebra T

How can we get an inductive limit description of these C*-algebras?
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Nuclear C*-algebras

To drop quasidiagonality from the inductive limits, we must relax
the asymptotically multiplicative assumption in our NF systems

P1,0 P2,1
Fo—F — F —....

But without this the inductive limit is only a closed self-adjoint
subspace of Il.F»/@ F,, not an algebra.

We need to relax multiplicativity without losing the C*-structure.
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Completely positive order zero maps

Definition
A cp map ¢ : A — B between C*-algebras is called order zero if it
is orthogonality preserving:

ab=0 = ¢(a)yY(b) =0, Va,beA;.
Example

e R, -weighted characters Aw : A — C on a C*-algebra A.
e For the function id : z — z in C([0,1]), the map

Mid : C([O’ 1]) - C([O’ 1])7

given by Miq(g)(z) = zg(z) for g € C([0,1]) is cp order zero.
e Given a *-homomorphism 7 : A — B between C*-algebras and
h € n(A) N By, the map hr(-) : A— B is cp order zero.
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A structure theorem for order zero maps

Theorem (Winter-Zacharias)

Every cp order zero map can be written as hr(-) : A— B for some
*~-homomorphism 7 : A — B and h € n(A)' N B,..

Corollary (Wolff, Winter-Zacharias)

Let A and B be C*-algebras with A unital. Acp mapy: A— B is
order zero iff

Y(a)i(b) = p(1a)¥(ab), ¥ a,b € A.
Remark
Note that if 1)(1a4) = 1g, then 1 is a x-homomorphism.
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Order Zero Maps

Theorem (Wolff)

If¢: A— B is a cp order zero map from a unital C*-algebra A,
then ¥(14) € Y(A).

Proposition (Winter-Zacharias)

Ify : A— B is a cp order zero map, then so are all of its matrix
amplifications y(r) : M,(A) — M,(B).

In other words, an order zero map is completely order zero.

Proposition

If{: A — B is a cp order zero map, then )(A) N By = ¥(AL).
Moreover, if a cp order zero map is invertible (on its image), its
inverse is automatically cp.!

10ne can view ((A), {M,(¥(A)) "M, (B)+}r,4(1a)) as an abstract
operator system.
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Images of order zero maps

A cp order zero map leaves an impression of its structure in its
image— even to the point that we can detect when a self-adjoint
subspace of a C*-algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a
C*-algebra out of the image outright.

In particular, for a cpc order zero map ¢ : A — B from a unital
C*-algebra, setting X := ¢(A) and e :=1(1a), we have the
following:

1. Wee X'nX
2. WZ] X2:={xy : x,yeX}={ez : z€ X} =:eX, and
3. for all x = x* € X, there exists R > 0 so that Re > x.
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A C*-structure

Theorem (C.-Winter)

Let B be a C*-algebra, X C B a closed self-adjoint subspace, and
ec B}r a distinguished element satisfying

l.eeX'NX
2. X2 =eX, and
3. for all x = x* € X, there exists R > 0 so that Re > x.

Then there is an associative bilinear map e : X x X — X and norm
|- lle : X — [0,00) so that (X, e, || -|le) is a C*-algebra with unit e.

We write C}(X) := (X, o, - |le)-

Theorem (C-Winter)

The map idx : Ci(X) — B is a cpc order zero map, which gives a
complete order isomorphism C}(X) <— X. By refining 3. we can
guarantee that it is completely isometric too.



Shorthand

For a closed self-adjoint subspace X of a C*-algebra B with
distinguished element e € B, we abbreviate the criteria that gave
us a C*-structure on X as follows:
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2. X2 = eX, and

3. for all x = x* € X, there
exists R > 0 so that Re > x.




Shorthand

For a closed self-adjoint subspace X of a C*-algebra B with
distinguished element e € B, we abbreviate the criteria that gave
us a C*-structure on X as follows:

l.eeX'nX
2. X2 = eX, and

3. for all x = x* € X, there
exists R > 0 so that Re > x.

Whenever (X, e) satisfy (C*), we can define multiplication
e: X x X — X anda C*norm | - |le on (X,e), and denote the
corresponding C*-algebra with C}(X).
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Remarks

What is this C*-algebra C;(X)?

If e =1p, then X would be a C*-subalgebra of B, and C}(X)
would just be X.

Otherwise, the C*-algebra C}(X) can be identified with the
enveloping C*-algebra C7 . (X) for the abstract operator system

(X, AMA(X) N M, (B)+ }r, €).

If (X, e) arose as the image of an injective cpc order zero map from
some unital C*-algebra ¢ : A — B, then A = C}(X) = C’. (X).
How special was e?

If h € BL is another element so that (X, h) also satisfy (C*), then
the associated C*-algebras would be unitally *-isomorphic.



Part IV: Generalized NF Systems
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Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative”

requirement from the NF systems:

Definition

An NF system consists of a sequence (F,), of finite dimensional

C*-algebras together with asymptotically multiplicative cpc maps

£1,0 02,1
Fo———)Fl———>F2—>...

But the issue was that, without asymptotic multiplicativity, the
limit need not be a C*-algebra.

Now we are equipped to overcome that hurdle.
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Generalizing generalized inductive limits

Given a sequence (F,), of finite dimensional C*-algebras together
cpc connecting maps

Fo 2% F 2% F —
we still have induced cpc maps pi : Fx — I1.Fo/@, F, =: F, and
we can still form the limit

X =|Jpu(Fi) C Feo.
k

Though X may not be a C*-algebra, if we can guarantee that
there some e € (F)! so that (X, e) satisfy (C*), then it will be
completely order isomorphic to the C*-algebra C}(X) via the
injective cpc order zero map idx : C5(X) —» X C Feo.
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Encoding (C*¥)

We say a sequence (F,), of finite dimensional C*-algebras together
cpc connecting maps

Fo _>p1,o Fl —>p271 F2 — ...,
is a Generalized NF System if there exists a sequence
(en) € (IT, Fn)L so that (Fn, pm,n, €n) asymptotically satisfy (C*).

This definition is build to ensure that the limit
X =, pn(Fn) C Fx together with e = [(en)n)] satisfy (C*).

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely
isometrically completely order isomorphic to a unital C*-algebra
Ci(X) via a cp order zero map idx : Cy(X) — X C Fw.
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induced from a completely positive approximation of a nuclear
C*-algebra.



Example

The definition is also build to be readily satisfied by a system
induced from a completely positive approximation of a nuclear
C*-algebra.

Example (BK, WZ, Brown-Carrién-White, CW)

Any separable, unital, nuclear C*-algebra A admits a cpc
approximation that gives rise to a generalized NF system.
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Generalized NF systems from cpc approximations

Consider a cpc approximation A —> F, 22 A of a unital
C*-algebra with asymptotically order zero maps (¢, : A = Fp)p.

(i-e., [6n(1a)n(ab) — wn(a)n(b)| = 0, ¥ a,b € A)

This mduces a completely |sometr|c cp order zero map v,b A— Fyo
100 Y2001 X

After passing to a subsystem, we can guarantee that
¢(A) = Ii_rr'(mem 0...0 (,On) =: X.

The fact that 1 is cpc order zero will imply that (X, e) satisfy
(C*) and moreover that the system is generalized NF.



Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have
moreover that A = C}(X).

Theorem (C.-Winter)

Any separable, unital, nuclear C*-algebra is completely
isometrically completely order isomorphic to the limit of a
generalized NF system via an order zero map.
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Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have
moreover that A = C}(X).

Theorem (C.-Winter)

Any separable, unital, nuclear C*-algebra is completely
isometrically completely order isomorphic to the limit of a
generalized NF system via an order zero map.

On the other hand, the limit of generalized NF system is by design
completely order isomorphic to a C*-algebra.

Given any generalized NF system, will the associated C*-algebra
Ci(X) be nuclear?
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CPAP for a generalized NF system?

Ci(X) ——— C5(X) ———— CiX)

lid X lid x lid x
X X X
FO P1,0 Fl p2,1 y F2

Since id)?1 is cp, so are ¢, := id;<1 o pp.
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CPAP for a generalized NF system?

Ci(X) — 44— C5(X) —— 41— Ci(X)

V \\ V \\ V
P1,0 S £1,2 “x

Fo Fl . > F2

Question

Can we come up with the downwards maps to get a completely
positive approximation?

[Winter] If we assume the upwards maps are decomposable into a
direct sum of a bounded number of cpc order zero maps, then yes.
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Question

Can we come up with the downwards maps to get a completely
positive approximation?

Nonetheless, this picture fits perfectly into Ozawa and Sato's
“one-way CPAP,” which then tells us that C}(X)** is injective.



CPAP for a generalized NF system?

Ci(X) — 44— C5(X) —— 41— Ci(X)

P10 P1,2

Fo ’ F ’ F>

Question

Can we come up with the downwards maps to get a completely
positive approximation?

Nonetheless, this picture fits perfectly into Ozawa and Sato's
“one-way CPAP,” which then tells us that C}(X)** is injective.

Using again Connes’ theorem, we can conclude that C}(X)** is
semi-discrete, and hence that C}(X) is nuclear.



Nuclear C*-algebras from limits of generalized NF systems

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely
order isomorphic to a unital nuclear C*-algebra C}(X) via an
completely isometric cp order zero map idx : C(X) — X C Fuo.



Removing quasidiagonality

Recall Blackadar and Kirchberg's characterization of NF algebras
as the separable nuclear quasidiagonal C*-algebras:
Theorem (Blackadar-Kirchberg)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear and quasidiagonal.
2. A is *-isomorphic to an NF algebra.



Removing quasidiagonality

Recall Blackadar and Kirchberg's characterization of NF algebras
as the separable nuclear quasidiagonal C*-algebras:
Theorem (Blackadar-Kirchberg)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear and quasidiagonal.
2. A is *-isomorphic to an NF algebra.
By replacing asymptotic multiplicativity with asymptotic order
zero, we can drop “quasidiagonal.”
Theorem (C.-Winter)
The following are equivalent for a separable C*-algebra A:
1. A is nuclear.

2. A is completely isometrically completely order isomorphic to
the limit of a generalized NF system via an order zero map.
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Epilogue: Technical Details



Encoding (C*¥)

The task is to encode (C*) into a system
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Encoding (C*¥)

The task is to encode (C*) into a system

p1,0 pP2,1
F0—>F1—>F2—)...

of cpc maps between finite dimensional C*-algebras.

We want conditions on the system which guarantee that we have
an element e € (F)! so that the limit X together with e satisfy

1l.eeX'nX
(C) 2. X2 = eX, and

3. e is an order unit for X.
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An approximately central order unit

To find a positive contraction e € X N X', we need a sequence
(en)n € T1,(Fn)} thatis

e asymptotically coherent, which guarantees that (pp(en))n C X
is Cauchy, and

e asymptotically central, which guarantees that e := lim, pp(ep)
commutes with X.

To ensure e is an order unit for X, we require that (e,), is an

e asymptotic uniform order unit, which guarantees that
llon(x)||e = pn(x) for every n >0, x = x* € F),.

Under these three assumptions, we get a positive contraction
e € X' N X that is an order unit for X.

Let's call such a sequence an asymptotically central order unit.
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Asymptotically order zero

With a designated “unit,” we want our system to capture the
unital definition of order zero (1(a)y(b) = ¢(1)(ab) ¥ a, b € A),
which translates to X2 = eX.

We arrange for this by requiring that our system be

e asymptotically order zero with respect to (e,),.
This condition tells us how to build, for any k > 0 and
X,y € Fi, an element z € X = J,, pn(Fn) so that
ez = p(x)pi(y).
It turns out this is enough to get X2 = eX.

Remark

Just as with order zero maps, if these maps are asymptotically
unital (i.e. ||len — 1F,|| = 0), then the resulting sequence is
asymptotically multiplicative, and we land back in the NF setting.



Generalized NF systems
(Working title)

Definition (C.-Winter)

A generalized NF system (Fp, pm.n, €n) consists of a sequence

(Fn)n of finite dimensional C*-algebras with cpc connecting maps
Fo __)ﬂl,o Fl _>p2,1 F2 — e,

that are asymptotically order zero with respect to an

asymptotically central order unit (e,)n € [],(Fn)}.



One Way CPAP

Theorem (Sato, Ozawa)

A C*-algebra is nuclear iff there exists a net (py : Fx — A)xen of
cpc maps from finite dimensional C*-algebras such that the
induced cpc map

[T, Fr — 22 poo(n, A)

l l satisfies A' C ¢ <(GH9>,; Il:-_),;>1>

ILA/@, Fa AN A)Jeo(A, A)




Theorem (C.-Winter)

Let B be a C*-algebra, X C B a self-adjoint subspace, and e € X
a distinguished element satisfying
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Theorem (C.-Winter)

Let B be a C*-algebra, X C B a self-adjoint subspace, and e € X
a distinguished element satisfying

1. 0<e<1

2. eec X

3. X2 =eX, and

4. e is an order unit for X C B.

Then there is an associative bilinear map e : X x X — X satisfying
xy =e(xey)Vx,yeX

so that (X, e) is a x-algebra with unit e. Moreover, there exists a
pre-C*-norm || - ||e on (X, e).

We denote the C*-algebra (YH'”',o, |- 1le) by Ci(X).
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An associative bilinear map

Suppose X C B arises as the image of a cpc order zero map
0 : C — B from a unital C*-algebra C. Then the assignment

(6(a), (b)) — 6(ab) =: 0(a) e O(b)

defines an associative bilinear map o : §(C) x 6(C) — 6(C), which
satisfies

6(a)6(b) = 0(1c)6(ab) = 6(1c) (6(a) » (b))

for all 8(a),0(b) € 0(C).

Without an order zero map, we cannot say exactly what x e y is for
x,y € X, but we can still say that it exists.
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An associative bilinear map

Proposition (C.-Winter)
Let B be a C*-algebra, X C B a closed self-adjoint subspace, and
ec B}r a distinguished element satisfying

1. ee X', and
2. e is an order unit for X C B.

Then for any x,y € X,
1. x=y < e"x=e"y forsomen>1,
2. x=x* & (ex) = (ex)*, and
3.x>20 & ex>0,

where the multiplication is in B.



An associative bilinear map

Let B be a C*-algebra, X C B a self-adjoint subspace, and e € X
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An associative bilinear map

Let B be a C*-algebra, X C B a self-adjoint subspace, and e € X
a distinguished element satisfying

1. 0<e<1

2. ee X

3. X2 =eX, and

4. e is a matrix order unit for X C B.

(3) = for each x,y € X there exists x @ y € X such that
xy = e(xey).
(1) + (2) + (4) = x e y is the unique such element:
ez=xy =e(xey)=z=xey.

And moreover this assignment defines an associative bilinear map
making (X, e) into a x-algebra.
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Suppose e € X C B was invertible. Then we define a pre-C*-norm
on X by
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for x € X would give us a C*-norm with respect to e. Indeed,
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In general e has an approximate inverse in B, i.e. a sequence
(hk(e))ken in B where hy € Go((0,1]) with thi(t) — 1 pointwise.
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