

Nuclearity and generalized inductive limits

Kristin Courtney
joint with Wilhelm Winter

WWU Münster

Conference on Operator Algebras and Related Topics
In Memory of Vaughan Jones
June 8-10, 2021

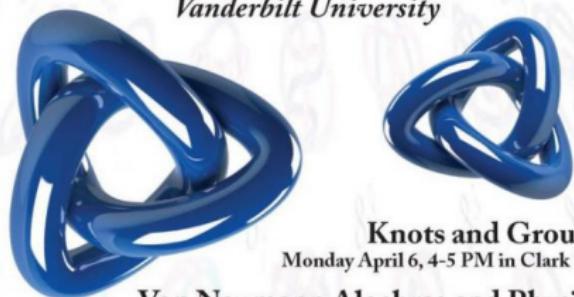
WESTFÄLISCHE
WILHELMUS-UNIVERSITÄT
MÜNSTER

The UVa Department of Mathematics & The Institute for Mathematical Sciences

present
Virginia Mathematics Lectures

Charlottesville, Virginia

Fields Medalist Vaughan F. R. Jones
Vanderbilt University



Knots and Groups

Monday April 6, 4-5 PM in Clark 108

Von Neumann Algebras and Physics
Tuesday April 7, 5-6 PM in Clark 108

Do All Subfactors Arise in Conformal Field Theory?
Wednesday April 8, 4-5 PM in Monroe 130

More Information: www.math.virginia.edu/lectures

Organizers: Andrei Rapinchuk and David Sherman

Department of Mathematics • University of Virginia • PO Box 400137, Charlottesville, VA 22904-4137

Part I: Inductive limits of C^* -algebras

Inductive limits of C^* -algebras

An **inductive system** of C^* -algebras consists of a sequence $(A_n)_n$ of C^* -algebras together with connecting $*$ -homomorphisms

$$A_0 \xrightarrow{\rho_{1,0}} A_1 \xrightarrow{\rho_{2,1}} A_2 \rightarrow \dots$$

Inductive limits of C^* -algebras

An **inductive system** of C^* -algebras consists of a sequence $(A_n)_n$ of C^* -algebras together with connecting $*$ -homomorphisms

$$A_0 \xrightarrow{\rho_{1,0}} A_1 \xrightarrow{\rho_{2,1}} A_2 \rightarrow \dots$$

For each $k \geq 0$, the quotient map $\prod_n A_n \rightarrow \prod_n A_n / \bigoplus_n A_n$ induces a $*$ -homomorphism $\rho_k : A_k \rightarrow \prod_n A_n / \bigoplus_n A_n$ by

$$\rho_k(a) := [(\rho_{n,k}(a))_{n>k}], \quad \forall a \in A_k.$$

Inductive limits of C^* -algebras

An **inductive system** of C^* -algebras consists of a sequence $(A_n)_n$ of C^* -algebras together with connecting $*$ -homomorphisms

$$A_0 \xrightarrow{\rho_{1,0}} A_1 \xrightarrow{\rho_{2,1}} A_2 \rightarrow \dots$$

For each $k \geq 0$, the quotient map $\prod_n A_n \rightarrow \prod_n A_n / \bigoplus_n A_n$ induces a $*$ -homomorphism $\rho_k : A_k \rightarrow \prod_n A_n / \bigoplus_n A_n$ by

$$\rho_k(a) := [(\rho_{n,k}(a))_{n>k}], \quad \forall a \in A_k.$$

The **inductive limit** of the system $(A_n, \rho_{m,n})$ is the C^* -algebra

$$A := \overline{\bigcup_{k \geq 0} \rho_k(A_k)} \subset \prod_n A_n / \bigoplus_n A_n.$$

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Definition

A C^* -algebra is **Approximately Finite (AF)** if it is $*$ -isomorphic to the inductive limit of finite dimensional C^* -algebras.

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Definition

A C^* -algebra is **Approximately Finite (AF)** if it is $*$ -isomorphic to the inductive limit of finite dimensional C^* -algebras.

Example

Likely the most famous example is the CAR algebra:

$$M_2 \xrightarrow{a \mapsto a \oplus a} M_4 \hookrightarrow \dots \hookrightarrow \overline{\bigcup_{k=1}^{\infty} M_{2^k}} =: M_{2^{\infty}}$$

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Definition

A C^* -algebra is **Approximately Finite (AF)** if it is $*$ -isomorphic to the inductive limit of finite dimensional C^* -algebras.

Example

Likely the most famous example is the CAR algebra:

$$M_2 \xrightarrow{a \mapsto a \oplus a} M_4 \hookrightarrow \dots \hookrightarrow \overline{\bigcup_{k=1}^{\infty} M_{2^k}} =: M_{2^{\infty}}$$

Alternatively, an AF C^* -algebra is one that contains an ascending sequence of finite dimensional subalgebras with norm-dense union.

Inductive limits of C^* -algebras

This inductive limit construction has provided many interesting examples of C^* -algebras, in particular, the AF algebras.

Definition

A C^* -algebra is **Approximately Finite (AF)** if it is $*$ -isomorphic to the inductive limit of finite dimensional C^* -algebras.

Example

Likely the most famous example is the CAR algebra:

$$M_2 \xrightarrow{a \mapsto a \oplus a} M_4 \hookrightarrow \dots \hookrightarrow \overline{\bigcup_{k=1}^{\infty} M_{2^k}} =: M_{2^{\infty}}$$

Alternatively, an AF C^* -algebra is one that contains an ascending sequence of finite dimensional subalgebras with norm-dense union. This has an important von Neumann analogue.

AFD von Neumann Algebras

Definition

A von Neumann algebra is called **Approximately Finite Dimensional (AFD)** (or [hyperfinite](#)) if it contains an ascending sequence of finite dimensional von Neumann subalgebras with weak*-dense union.

AFD von Neumann Algebras

Definition

A von Neumann algebra is called **Approximately Finite Dimensional (AFD)** (or **hyperfinite**) if it contains an ascending sequence of finite dimensional von Neumann subalgebras with weak*-dense union.

Example

The hyperfinite II_1 -factor \mathcal{R} .

$$M_2 \xrightarrow{a \mapsto a \oplus a} M_4 \hookrightarrow \dots \hookrightarrow \overline{\bigcup_{k=1}^{\infty} M_{2^k}}^{wk^*} = \mathcal{R}$$

AFD von Neumann Algebras

Definition

A von Neumann algebra is called **Approximately Finite Dimensional (AFD)** (or **hyperfinite**) if it contains an ascending sequence of finite dimensional von Neumann subalgebras with weak*-dense union.

Example

The hyperfinite II_1 -factor \mathcal{R} .

$$M_2 \xrightarrow{a \mapsto a \oplus a} M_4 \hookrightarrow \dots \hookrightarrow \overline{\bigcup_{k=1}^{\infty} M_{2^k}}^{wk^*} = \mathcal{R}$$

There are other ways to approximate operator algebras by finite dimensional ones.

Semi-discrete von Neumann Algebras

Definition

A von Neumann algebra \mathcal{M} is [semi-discrete](#) if the identity map $\text{id}_{\mathcal{M}} : \mathcal{M} \rightarrow \mathcal{M}$ approximately factorizes through matrix algebras in the point-weak* topology,

Semi-discrete von Neumann Algebras

Definition

A von Neumann algebra \mathcal{M} is **semi-discrete** if the identity map $\text{id}_{\mathcal{M}} : \mathcal{M} \rightarrow \mathcal{M}$ approximately factorizes through matrix algebras in the point-weak* topology,
i.e., there exist completely positive unital maps

$$\begin{array}{ccc} \mathcal{M} & \xrightarrow{\text{id}_{\mathcal{M}}} & \mathcal{M} \\ & \searrow \psi_n & \nearrow \varphi_n \\ & \mathcal{M}_{k_n} & \end{array}$$

with $\xi(\varphi_n \circ \psi_n(a)) \rightarrow \xi(a)$ for all $a \in \mathcal{M}, \xi \in \mathcal{M}_*$.

Semi-discrete von Neumann Algebras

Definition

A von Neumann algebra \mathcal{M} is **semi-discrete** if the identity map $\text{id}_{\mathcal{M}} : \mathcal{M} \rightarrow \mathcal{M}$ approximately factorizes through matrix algebras in the point-weak* topology,
i.e., there exist completely positive unital maps

$$\begin{array}{ccc} \mathcal{M} & \xrightarrow{\text{id}_{\mathcal{M}}} & \mathcal{M} \\ & \searrow \psi_n & \nearrow \varphi_n \\ & & M_{k_n} \end{array}$$

with $\xi(\varphi_n \circ \psi_n(a)) \rightarrow \xi(a)$ for all $a \in \mathcal{M}, \xi \in \mathcal{M}_*$.

Example

Any AFD von Neumann algebra is semi-discrete.

Semi-discrete von Neumann Algebras

Definition

A von Neumann algebra \mathcal{M} is **semi-discrete** if the identity map $\text{id}_{\mathcal{M}} : \mathcal{M} \rightarrow \mathcal{M}$ approximately factorizes through matrix algebras in the point-weak* topology,
i.e., there exist completely positive unital maps

$$\begin{array}{ccc} \mathcal{M} & \xrightarrow{\text{id}_{\mathcal{M}}} & \mathcal{M} \\ & \searrow \psi_n & \nearrow \varphi_n \\ & & M_{k_n} \end{array}$$

with $\xi(\varphi_n \circ \psi_n(a)) \rightarrow \xi(a)$ for all $a \in \mathcal{M}, \xi \in \mathcal{M}_*$.

Example

Any AFD von Neumann algebra is semi-discrete.

Theorem (Connes)

Any semi-discrete von Neumann algebra is AFD.

Classification of von Neumann factors

One major outcome of this theorem was the Connes-Haagerup classification of injective von Neumann factors.

Classification of von Neumann factors

One major outcome of this theorem was the Connes-Haagerup classification of injective von Neumann factors.

Corollary (Connes, Murray-von Neumann)

The following von Neumann algebras are all $$ -isomorphic to \mathcal{R} :*

- $L(\Gamma)$ for a countable ICC amenable group Γ
- $\overline{\bigcup_{k=1}^{\infty} M_{n^k}}^{wk^*}$ for $n \geq 2$.

Classification of von Neumann factors

One major outcome of this theorem was the Connes-Haagerup classification of injective von Neumann factors.

Corollary (Connes, Murray-von Neumann)

*The following von Neumann algebras are all * -isomorphic to \mathcal{R} :*

- $L(\Gamma)$ for a countable ICC amenable group Γ
- $\overline{\bigcup_{k=1}^{\infty} M_{n^k}}^{wk^*}$ for $n \geq 2$.

The analogous classification of nuclear C^* -algebras is not *nearly* as tidy, and was only recently completed after the work of many hands over many years.

Nuclear C^* -algebras

Just as AF C^* -algebras are analogous to AFD von Neumann algebras, there is a C^* -analogue to semi-discreteness.

Nuclear C^* -algebras

Just as AF C^* -algebras are analogous to AFD von Neumann algebras, there is a C^* -analogue to semi-discreteness.

Definition

A C^* -algebra A is **nuclear** if the identity map $\text{id}_A : A \rightarrow A$ approximately factorizes through matrix algebras in the point-**norm** topology,

Nuclear C^* -algebras

Just as AF C^* -algebras are analogous to AFD von Neumann algebras, there is a C^* -analogue to semi-discreteness.

Definition

A C^* -algebra A is **nuclear** if the identity map $\text{id}_A : A \rightarrow A$ approximately factorizes through matrix algebras in the point-**norm** topology, i.e., there exist completely positive contractive (cpc) maps

$$\begin{array}{ccc} A & \xrightarrow{\text{id}_A} & A \\ & \searrow \psi_n & \swarrow \varphi_n \\ & M_{k_n} & \end{array}$$

with $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

Nuclear C^* -algebras

Just as AF C^* -algebras are analogous to AFD von Neumann algebras, there is a C^* -analogue to semi-discreteness.

Definition

A C^* -algebra A is **nuclear** if the identity map $\text{id}_A : A \rightarrow A$ approximately factorizes through matrix algebras in the point-**norm** topology, i.e., there exist completely positive contractive (cpc) maps

$$\begin{array}{ccc} A & \xrightarrow{\text{id}_A} & A \\ & \searrow \psi_n & \swarrow \varphi_n \\ & M_{k_n} & \end{array}$$

with $\|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0$ for all $a \in A$.

Example

Any AF C^* -algebra is nuclear.

Nuclear and AF C*-algebras

Unlike in the von Neumann algebra setting, there are many nuclear C*-algebras that are not AF.

Nuclear and AF C*-algebras

Unlike in the von Neumann algebra setting, there are many nuclear C*-algebras that are not AF.

Example

- $C(X)$ where X is an infinite totally disconnected compact metrizable space.
- Many C*-algebras arising from amenable group (actions).
- Irrational Rotation algebras A_θ
- Cuntz algebras \mathcal{O}_n
- Toeplitz algebra \mathcal{T}

Nuclear and AF C*-algebras

Unlike in the von Neumann algebra setting, there are many nuclear C*-algebras that are not AF.

Example

- $C(X)$ where X is an infinite totally disconnected compact metrizable space.
- Many C*-algebras arising from amenable group (actions).
- Irrational Rotation algebras A_θ
- Cuntz algebras \mathcal{O}_n
- Toeplitz algebra \mathcal{T}

So, a direct analogue to Connes' result is out of the question.

Nuclear and AF C*-algebras

Unlike in the von Neumann algebra setting, there are many nuclear C*-algebras that are not AF.

Example

- $C(X)$ where X is an infinite totally disconnected compact metrizable space.
- Many C*-algebras arising from amenable group (actions).
- Irrational Rotation algebras A_θ
- Cuntz algebras \mathcal{O}_n
- Toeplitz algebra \mathcal{T}

So, a direct analogue to Connes' result is out of the question.

But this is neither unusual nor a deterrent.

Part II: Generalized Inductive Limits

Generalized inductive limits

To give an inductive limit description of nuclear C^* -algebras, we must relax our requirements on the inductive systems.

Generalized inductive limits

To give an inductive limit description of nuclear C^* -algebras, we must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that on-the-nose behavior at each step is often superfluous.

Generalized inductive limits

To give an inductive limit description of nuclear C^* -algebras, we must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Generalized inductive limits

To give an inductive limit description of nuclear C^* -algebras, we must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced generalized inductive systems of C^* -algebras, where the connecting maps only **asymptotically** behave like $*$ -homomorphisms. They showed that the limits of such systems form important classes of C^* -algebras.

Generalized inductive limits

To give an inductive limit description of nuclear C^* -algebras, we must relax our requirements on the inductive systems.

Working with these inductive systems, one realizes that on-the-nose behavior at each step is often superfluous.

Asymptotic behavior is what really matters.

Following this philosophy, Blackadar and Kirchberg introduced generalized inductive systems of C^* -algebras, where the connecting maps only **asymptotically** behave like $*$ -homomorphisms. They showed that the limits of such systems form important classes of C^* -algebras.

Ignoring the full generality of their constructions, we focus on their so-called **NF systems**.

NF systems

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with asymptotically multiplicative cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

NF systems

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with asymptotically multiplicative cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

Asymptotically multiplicative means that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ such that for all $m > n > M$,

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

NF systems

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with asymptotically multiplicative cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

Asymptotically multiplicative means that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ such that for all $m > n > M$,

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

Remark

The naive approach would involve $\|\rho_{m,k}(xy) - \rho_{m,k}(x)\rho_{m,k}(y)\|$, but this is places too much importance on something happening at the k^{th} step and is hence too restrictive.

NF systems

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with asymptotically multiplicative cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

Asymptotically multiplicative means that for any $k \geq 0$, $x, y \in F_k$, and $\varepsilon > 0$, there exists an $M > k$ such that for all $m > n > M$,

$$\|\rho_{m,n}(\rho_{n,k}(x)\rho_{n,k}(y)) - \rho_{m,k}(x)\rho_{m,k}(y)\| < \varepsilon.$$

The limit of an NF system is formed the same as before:

$\overline{\bigcup_k \rho_k(F_k)} \subset \prod_n F_n / \bigoplus F_n$ where $\rho_k : F_k \rightarrow \prod_n F_n / \bigoplus F_n$ are the induced cpc maps.

NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a C^* -algebra, which we call an **NF Algebra**.

NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a C^* -algebra, which we call an **NF Algebra**.

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra A is NF iff there exists a sequence of finite dimensional C^* -algebras $(F_n)_n$ and cpc maps $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ so that for all $a, b \in A$,*

$$\begin{aligned} & \|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0, \\ & \|\|a\| - \|\psi_n(a)\|\| \rightarrow 0, \text{ and} \\ & \|\psi_n(a)\psi_n(b) - \psi_n(ab)\| \rightarrow 0. \end{aligned}$$

NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a C^* -algebra, which we call an **NF Algebra**.

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra A is NF iff there exists a sequence of finite dimensional C^* -algebras $(F_n)_n$ and cpc maps $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ so that for all $a, b \in A$,*

$$\begin{aligned} & \|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0, \\ & \|\|a\| - \|\psi_n(a)\|\| \rightarrow 0, \text{ and} \\ & \|\psi_n(a)\psi_n(b) - \psi_n(ab)\| \rightarrow 0. \end{aligned}$$

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a C^* -algebra, which we call an **NF Algebra**.

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra A is NF iff there exists a sequence of finite dimensional C^* -algebras $(F_n)_n$ and cpc maps $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ so that for all $a, b \in A$,*

$$\begin{aligned} & \|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0, \\ & \|\|a\| - \|\psi_n(a)\|\| \rightarrow 0, \text{ and} \\ & \|\psi_n(a)\psi_n(b) - \psi_n(ab)\| \rightarrow 0. \end{aligned}$$

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

NF Algebras

Since this quotient only cares about what happens asymptotically, the limit is still a C^* -algebra, which we call an **NF Algebra**.

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra A is NF iff there exists a sequence of finite dimensional C^* -algebras $(F_n)_n$ and cpc maps $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ so that for all $a, b \in A$,*

$$\begin{aligned} & \|\varphi_n \circ \psi_n(a) - a\| \rightarrow 0, \\ & \|\|a\| - \|\psi_n(a)\|\| \rightarrow 0, \text{ and} \\ & \|\psi_n(a)\psi_n(b) - \psi_n(ab)\| \rightarrow 0. \end{aligned}$$

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Nuclear Quasidiagonal C^* -algebras

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Nuclear Quasidiagonal C^* -algebras

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)

$C^*(\Gamma)$ is NF iff Γ is amenable.

Nuclear Quasidiagonal C^* -algebras

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)

$C^*(\Gamma)$ is NF iff Γ is amenable.

Example

Infinite C^* -algebras (ones with a proper isometry) are **not**.

Nuclear Quasidiagonal C^* -algebras

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)

$C^*(\Gamma)$ is NF iff Γ is amenable.

Example

Infinite C^* -algebras (ones with a proper isometry) are **not**.

- Cuntz algebras \mathcal{O}_n for $n \geq 2$
- Toeplitz algebra \mathcal{T}

Nuclear Quasidiagonal C^* -algebras

Theorem (Blackadar-Kirchberg)

A separable C^ -algebra is NF iff it is nuclear and quasidiagonal.*

Example (Rosenberg, Tikuisis-White-Winter)

(Rosenberg, Tikuisis-White-Winter)

$C^*(\Gamma)$ is NF iff Γ is amenable.

Example

Infinite C^* -algebras (ones with a proper isometry) are **not**.

- Cuntz algebras \mathcal{O}_n for $n \geq 2$
- Toeplitz algebra \mathcal{T}

How can we get an inductive limit description of these C^* -algebras?

Nuclear C*-algebras

To drop quasidiagonality from the inductive limits, we must relax the asymptotically multiplicative assumption in our NF systems

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

Nuclear C*-algebras

To drop quasidiagonality from the inductive limits, we must relax the asymptotically multiplicative assumption in our NF systems

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

But without this the inductive limit is only a closed self-adjoint subspace of $\prod_n F_n / \bigoplus F_n$, not an algebra.

Nuclear C*-algebras

To drop quasidiagonality from the inductive limits, we must relax the asymptotically multiplicative assumption in our NF systems

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

But without this the inductive limit is only a closed self-adjoint subspace of $\prod_n F_n / \bigoplus F_n$, not an algebra.

We need to relax multiplicativity without losing the C*-structure.

Part III: Order Zero Maps

Completely positive order zero maps

Definition

A cp map $\psi : A \rightarrow B$ between C^* -algebras is called **order zero** if it is orthogonality preserving:

$$ab = 0 \implies \psi(a)\psi(b) = 0, \quad \forall a, b \in A_+.$$

Completely positive order zero maps

Definition

A cp map $\psi : A \rightarrow B$ between C^* -algebras is called **order zero** if it is orthogonality preserving:

$$ab = 0 \implies \psi(a)\psi(b) = 0, \quad \forall a, b \in A_+.$$

Example

- \mathbb{R}_+ -weighted characters $\lambda\pi : A \rightarrow \mathbb{C}$ on a C^* -algebra A .

Completely positive order zero maps

Definition

A cp map $\psi : A \rightarrow B$ between C^* -algebras is called **order zero** if it is orthogonality preserving:

$$ab = 0 \implies \psi(a)\psi(b) = 0, \quad \forall a, b \in A_+.$$

Example

- \mathbb{R}_+ -weighted characters $\lambda\pi : A \rightarrow \mathbb{C}$ on a C^* -algebra A .
- For the function $\text{id} : z \rightarrow z$ in $C([0, 1])$, the map

$$M_{\text{id}} : C([0, 1]) \rightarrow C([0, 1]),$$

given by $M_{\text{id}}(g)(z) = zg(z)$ for $g \in C([0, 1])$ is cp order zero.

Completely positive order zero maps

Definition

A cp map $\psi : A \rightarrow B$ between C^* -algebras is called **order zero** if it is orthogonality preserving:

$$ab = 0 \implies \psi(a)\psi(b) = 0, \quad \forall a, b \in A_+.$$

Example

- \mathbb{R}_+ -weighted characters $\lambda\pi : A \rightarrow \mathbb{C}$ on a C^* -algebra A .
- For the function $\text{id} : z \rightarrow z$ in $C([0, 1])$, the map

$$M_{\text{id}} : C([0, 1]) \rightarrow C([0, 1]),$$

given by $M_{\text{id}}(g)(z) = zg(z)$ for $g \in C([0, 1])$ is cp order zero.

- Given a $*$ -homomorphism $\pi : A \rightarrow B$ between C^* -algebras and $h \in \pi(A)' \cap B_+$, the map $h\pi(\cdot) : A \rightarrow B$ is cp order zero.

A structure theorem for order zero maps

Theorem (Winter-Zacharias)

Every cp order zero map can be written as $h\pi(\cdot) : A \rightarrow B$ for some $$ -homomorphism $\pi : A \rightarrow B$ and $h \in \pi(A)' \cap B_+$.*

A structure theorem for order zero maps

Theorem (Winter-Zacharias)

Every cp order zero map can be written as $h\pi(\cdot) : A \rightarrow B$ for some $$ -homomorphism $\pi : A \rightarrow B$ and $h \in \pi(A)' \cap B_+$.*

Corollary (Wolff, Winter-Zacharias)

Let A and B be C^ -algebras with A unital. A cp map $\psi : A \rightarrow B$ is order zero iff*

$$\psi(a)\psi(b) = \psi(1_A)\psi(ab), \quad \forall a, b \in A.$$

A structure theorem for order zero maps

Theorem (Winter-Zacharias)

Every cp order zero map can be written as $h\pi(\cdot) : A \rightarrow B$ for some $*$ -homomorphism $\pi : A \rightarrow B$ and $h \in \pi(A)' \cap B_+$.

Corollary (Wolff, Winter-Zacharias)

Let A and B be C^* -algebras with A unital. A cp map $\psi : A \rightarrow B$ is order zero iff

$$\psi(a)\psi(b) = \psi(1_A)\psi(ab), \quad \forall a, b \in A.$$

Remark

Note that if $\psi(1_A) = 1_B$, then ψ is a $*$ -homomorphism.

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Proposition (Winter-Zacharias)

If $\psi : A \rightarrow B$ is a cp order zero map, then so are all of its matrix amplifications $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$.

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Proposition (Winter-Zacharias)

If $\psi : A \rightarrow B$ is a cp order zero map, then so are all of its matrix amplifications $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$.

In other words, an order zero map is completely order zero.

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Proposition (Winter-Zacharias)

If $\psi : A \rightarrow B$ is a cp order zero map, then so are all of its matrix amplifications $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$.

In other words, an order zero map is completely order zero.

Proposition

If $\psi : A \rightarrow B$ is a cp order zero map, then $\psi(A) \cap B_+ = \psi(A_+)$.

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Proposition (Winter-Zacharias)

If $\psi : A \rightarrow B$ is a cp order zero map, then so are all of its matrix amplifications $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$.

In other words, an order zero map is completely order zero.

Proposition

If $\psi : A \rightarrow B$ is a cp order zero map, then $\psi(A) \cap B_+ = \psi(A_+)$.

Moreover, if a cp order zero map is invertible (on its image), its inverse is automatically cp.

Order Zero Maps

Theorem (Wolff)

If $\psi : A \rightarrow B$ is a cp order zero map from a unital C^ -algebra A , then $\psi(1_A) \in \psi(A)'$.*

Proposition (Winter-Zacharias)

If $\psi : A \rightarrow B$ is a cp order zero map, then so are all of its matrix amplifications $\psi^{(r)} : M_r(A) \rightarrow M_r(B)$.

In other words, an order zero map is completely order zero.

Proposition

If $\psi : A \rightarrow B$ is a cp order zero map, then $\psi(A) \cap B_+ = \psi(A_+)$. Moreover, if a cp order zero map is invertible (on its image), its inverse is automatically cp.¹

¹One can view $(\psi(A), \{M_r(\psi(A)) \cap M_r(B)_+\}_r, \psi(1_A))$ as an abstract operator system.

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a C^* -algebra out of the image outright.

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a C^* -algebra out of the image outright.

In particular, for a cpc order zero map $\psi : A \rightarrow B$ from a unital C^* -algebra, setting $X := \psi(A)$ and $e := \psi(1_A)$, we have the following:

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a C^* -algebra out of the image outright.

In particular, for a cpc order zero map $\psi : A \rightarrow B$ from a unital C^* -algebra, setting $X := \psi(A)$ and $e := \psi(1_A)$, we have the following:

1. [W] $e \in X' \cap X$

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a C^* -algebra out of the image outright.

In particular, for a cpc order zero map $\psi : A \rightarrow B$ from a unital C^* -algebra, setting $X := \psi(A)$ and $e := \psi(1_A)$, we have the following:

1. [W] $e \in X' \cap X$
2. [WZ] $X^2 := \{xy : x, y \in X\} = \{ez : z \in X\} =: eX,$

Images of order zero maps

A cp order zero map leaves an impression of its structure in its image— even to the point that we can detect when a self-adjoint subspace of a C^* -algebra is the image of some cp order zero map.

This preserved structure is actually enough to allow us to build a C^* -algebra out of the image outright.

In particular, for a cpc order zero map $\psi : A \rightarrow B$ from a unital C^* -algebra, setting $X := \psi(A)$ and $e := \psi(1_A)$, we have the following:

1. [W] $e \in X' \cap X$
2. [WZ] $X^2 := \{xy : x, y \in X\} = \{ez : z \in X\} =: eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

A C*-structure

A C^* -structure

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X' \cap X$
2. $X^2 = eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

A C^* -structure

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X' \cap X$
2. $X^2 = eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ and norm $\|\cdot\|_\bullet : X \rightarrow [0, \infty)$ so that $(X, \bullet, \|\cdot\|_\bullet)$ is a C^* -algebra with unit e .

A C^* -structure

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X' \cap X$
2. $X^2 = eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ and norm $\|\cdot\|_\bullet : X \rightarrow [0, \infty)$ so that $(X, \bullet, \|\cdot\|_\bullet)$ is a C^* -algebra with unit e .

We write $C_\bullet^*(X) := (X, \bullet, \|\cdot\|_\bullet)$.

A C^* -structure

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X' \cap X$
2. $X^2 = eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ and norm $\|\cdot\|_\bullet : X \rightarrow [0, \infty)$ so that $(X, \bullet, \|\cdot\|_\bullet)$ is a C^* -algebra with unit e .

We write $C_\bullet^*(X) := (X, \bullet, \|\cdot\|_\bullet)$.

Theorem (C-Winter)

The map $\text{id}_X : C_\bullet^*(X) \rightarrow B$ is a cpc order zero map, which gives a complete order isomorphism $C_\bullet^*(X) \longleftrightarrow X$.

A C^* -structure

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X' \cap X$
2. $X^2 = eX$, and
3. for all $x = x^* \in X$, there exists $R > 0$ so that $Re \geq x$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ and norm $\|\cdot\|_\bullet : X \rightarrow [0, \infty)$ so that $(X, \bullet, \|\cdot\|_\bullet)$ is a C^* -algebra with unit e .

We write $C_\bullet^*(X) := (X, \bullet, \|\cdot\|_\bullet)$.

Theorem (C-Winter)

The map $\text{id}_X : C_\bullet^*(X) \rightarrow B$ is a cpc order zero map, which gives a complete order isomorphism $C_\bullet^*(X) \longleftrightarrow X$. By refining 3. we can guarantee that it is completely isometric too.

Shorthand

For a closed self-adjoint subspace X of a C^* -algebra B with distinguished element $e \in B_+^1$, we abbreviate the criteria that gave us a C^* -structure on X as follows:

$$(C^*) \left\{ \begin{array}{l} 1. \quad e \in X' \cap X \\ 2. \quad X^2 = eX, \text{ and} \\ 3. \quad \text{for all } x = x^* \in X, \text{ there} \\ \quad \text{exists } R > 0 \text{ so that } Re \geq x. \end{array} \right.$$

Shorthand

For a closed self-adjoint subspace X of a C^* -algebra B with distinguished element $e \in B_+^1$, we abbreviate the criteria that gave us a C^* -structure on X as follows:

$$(C^*) \left\{ \begin{array}{l} 1. \quad e \in X' \cap X \\ 2. \quad X^2 = eX, \text{ and} \\ 3. \quad \text{for all } x = x^* \in X, \text{ there} \\ \quad \text{exists } R > 0 \text{ so that } Re \geq x. \end{array} \right.$$

Whenever (X, e) satisfy (C^*) , we can define multiplication $\bullet : X \times X \rightarrow X$ and a C^* -norm $\|\cdot\|_\bullet$ on (X, \bullet) , and denote the corresponding C^* -algebra with $C_\bullet^*(X)$.

Remarks

What is this C^* -algebra $C^*_\bullet(X)$?

Remarks

What is this C^* -algebra $C_\bullet^*(X)$?

If $e = 1_B$, then X would be a C^* -subalgebra of B , and $C_\bullet^*(X)$ would just be X .

Remarks

What is this C^* -algebra $C_\bullet^*(X)$?

If $e = 1_B$, then X would be a C^* -subalgebra of B , and $C_\bullet^*(X)$ would just be X .

Otherwise, the C^* -algebra $C_\bullet^*(X)$ can be identified with the enveloping C^* -algebra $C_{\min}^*(X)$ for the abstract operator system $(X, \{M_r(X) \cap M_r(B)_+\}_r, e)$.

Remarks

What is this C^* -algebra $C_\bullet^*(X)$?

If $e = 1_B$, then X would be a C^* -subalgebra of B , and $C_\bullet^*(X)$ would just be X .

Otherwise, the C^* -algebra $C_\bullet^*(X)$ can be identified with the enveloping C^* -algebra $C_{\min}^*(X)$ for the abstract operator system $(X, \{M_r(X) \cap M_r(B)_+\}_r, e)$.

If (X, e) arose as the image of an injective cpc order zero map from some unital C^* -algebra $\psi : A \rightarrow B$, then $A \cong C_\bullet^*(X) \cong C_{\min}^*(X)$.

Remarks

What is this C^* -algebra $C_\bullet^*(X)$?

If $e = 1_B$, then X would be a C^* -subalgebra of B , and $C_\bullet^*(X)$ would just be X .

Otherwise, the C^* -algebra $C_\bullet^*(X)$ can be identified with the enveloping C^* -algebra $C_{\min}^*(X)$ for the abstract operator system $(X, \{M_r(X) \cap M_r(B)_+\}_r, e)$.

If (X, e) arose as the image of an injective cpc order zero map from some unital C^* -algebra $\psi : A \rightarrow B$, then $A \cong C_\bullet^*(X) \cong C_{\min}^*(X)$.

How special was e ?

If $h \in B_+^1$ is another element so that (X, h) also satisfy (C^*) , then the associated C^* -algebras would be unitally $*$ -isomorphic.

Part IV: Generalized NF Systems

Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative” requirement from the NF systems:

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with **asymptotically multiplicative** cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative” requirement from the NF systems:

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with **asymptotically multiplicative** cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

But the issue was that, without asymptotic multiplicativity, the limit need not be a C^* -algebra.

Back to generalized inductive limits

Recall that our goal was to relax the “asymptotic multiplicative” requirement from the NF systems:

Definition

An **NF system** consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras together with **asymptotically multiplicative** cpc maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

But the issue was that, without asymptotic multiplicativity, the limit need not be a C^* -algebra.

Now we are equipped to overcome that hurdle.

Generalizing generalized inductive limits

Given a sequence $(F_n)_n$ of finite dimensional C^* -algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

we still have induced cpc maps $\rho_k : F_k \rightarrow \prod_n F_n / \bigoplus_n F_n =: F_\infty$, and we can still form the limit

$$X = \overline{\bigcup_k \rho_k(F_k)} \subset F_\infty.$$

Generalizing generalized inductive limits

Given a sequence $(F_n)_n$ of finite dimensional C^* -algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

we still have induced cpc maps $\rho_k : F_k \rightarrow \prod_n F_n / \bigoplus_n F_n =: F_\infty$, and we can still form the limit

$$X = \overline{\bigcup_k \rho_k(F_k)} \subset F_\infty.$$

Though X may not be a C^* -algebra, if we can guarantee that there is some $e \in (F_\infty)_+^1$ so that (X, e) satisfy (C^*) , then it will be completely order isomorphic to the C^* -algebra $C_\bullet^*(X)$ via the injective cpc order zero map $\text{id}_X : C_\bullet^*(X) \rightarrow X \subset F_\infty$.

Encoding (C^{*})

We say a sequence $(F_n)_n$ of finite dimensional C^{*}-algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

is a **Generalized NF System** if there exists a sequence $(e_n) \in (\prod_n F_n)_+^1$ so that $(F_n, \rho_{m,n}, e_n)$ asymptotically satisfy (C^{*}).

Encoding (C^{*})

We say a sequence $(F_n)_n$ of finite dimensional C^{*}-algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

is a **Generalized NF System** if there exists a sequence $(e_n) \in (\prod_n F_n)_+^1$ so that $(F_n, \rho_{m,n}, e_n)$ asymptotically satisfy (C^{*}).

This definition is build to ensure that the limit $X = \overline{\bigcup_n \rho_n(F_n)} \subset F_\infty$ together with $e = [(e_n)_n]$ satisfy (C^{*}).

Encoding (C^{*})

We say a sequence $(F_n)_n$ of finite dimensional C^{*}-algebras together cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

is a **Generalized NF System** if there exists a sequence $(e_n) \in (\prod_n F_n)_+^1$ so that $(F_n, \rho_{m,n}, e_n)$ asymptotically satisfy (C^{*}).

This definition is build to ensure that the limit $X = \overline{\bigcup_n \rho_n(F_n)} \subset F_\infty$ together with $e = [(e_n)_n]$ satisfy (C^{*}).

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely isometrically completely order isomorphic to a unital C^{}-algebra $C_\bullet^*(X)$ via a cp order zero map $\text{id}_X : C_\bullet^*(X) \rightarrow X \subset F_\infty$.*

Example

The definition is also build to be readily satisfied by a system induced from a completely positive approximation of a nuclear C^* -algebra.

Example

The definition is also build to be readily satisfied by a system induced from a completely positive approximation of a nuclear C^* -algebra.

Example (BK, WZ, Brown-Carrión-White, CW)

Any separable, unital, nuclear C^* -algebra A admits a cpc approximation that gives rise to a generalized NF system.

Generalized NF systems from cpc approximations

Consider a cpc approximation $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a unital nuclear C^* -algebra with **asymptotically order zero maps** $(\psi_n : A \rightarrow F_n)_n$.

Generalized NF systems from cpc approximations

Consider a cpc approximation $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a unital nuclear C^* -algebra with **asymptotically order zero maps** $(\psi_n : A \rightarrow F_n)_n$.

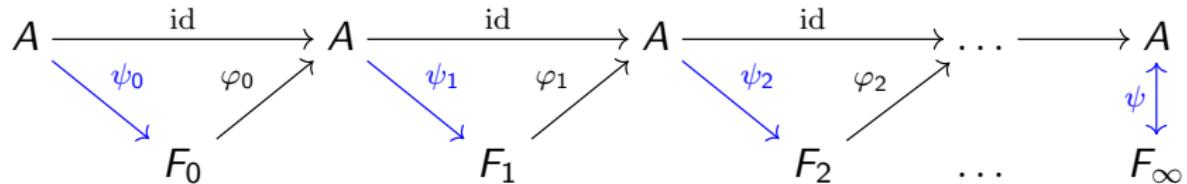
(i.e., $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0, \forall a, b \in A$)

Generalized NF systems from cpc approximations

Consider a cpc approximation $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a unital nuclear C^* -algebra with **asymptotically order zero maps** $(\psi_n : A \rightarrow F_n)_{n \in \mathbb{N}}$.

(i.e., $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0, \forall a, b \in A$)

This induces a completely isometric cp order zero map $\psi : A \rightarrow F_\infty$

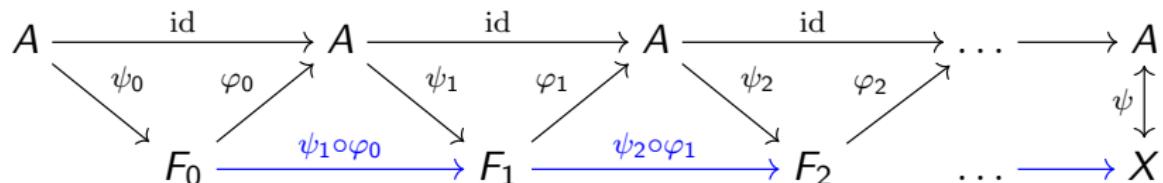


Generalized NF systems from cpc approximations

Consider a cpc approximation $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a unital C^* -algebra with **asymptotically order zero maps** $(\psi_n : A \rightarrow F_n)_{n \in \mathbb{N}}$.

(i.e., $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0, \forall a, b \in A$)

This induces a completely isometric cp order zero map $\psi : A \rightarrow F_\infty$



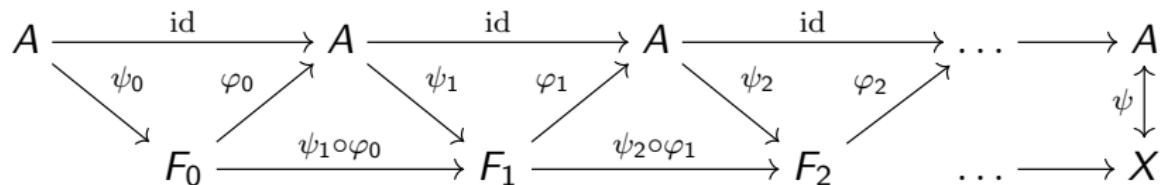
After passing to a subsystem, we can guarantee that $\psi(A) = \lim_{\rightarrow} (F_n, \psi_m \circ \dots \circ \varphi_n) =: X$.

Generalized NF systems from cpc approximations

Consider a cpc approximation $A \xrightarrow{\psi_n} F_n \xrightarrow{\varphi_n} A$ of a unital C^* -algebra with [asymptotically order zero maps](#) $(\psi_n : A \rightarrow F_n)_{n \in \mathbb{N}}$.

(i.e., $\|\psi_n(1_A)\psi_n(ab) - \psi_n(a)\psi_n(b)\| \rightarrow 0$, $\forall a, b \in A$)

This induces a completely isometric cp order zero map $\psi : A \rightarrow F_\infty$



After passing to a subsystem, we can guarantee that $\psi(A) = \lim_{\rightarrow}(F_n, \psi_m \circ \dots \circ \varphi_n) =: X$.

The fact that ψ is cpc order zero will imply that (X, e) satisfy (C^*) and moreover that the system is generalized NF.

Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have moreover that $A \cong C^*_\bullet(X)$.

Theorem (C.-Winter)

Any separable, unital, nuclear C^ -algebra is completely isometrically completely order isomorphic to the limit of a generalized NF system via an order zero map.*

Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have moreover that $A \cong C^*_\bullet(X)$.

Theorem (C.-Winter)

Any separable, unital, nuclear C^ -algebra is completely isometrically completely order isomorphic to the limit of a generalized NF system via an order zero map.*

On the other hand, the limit of generalized NF system is by design completely order isomorphic to a C^* -algebra.

Limits of generalized NF systems from cpc approximations

Since X is the image of an injective cpc order zero map, we have moreover that $A \cong C_*^*(X)$.

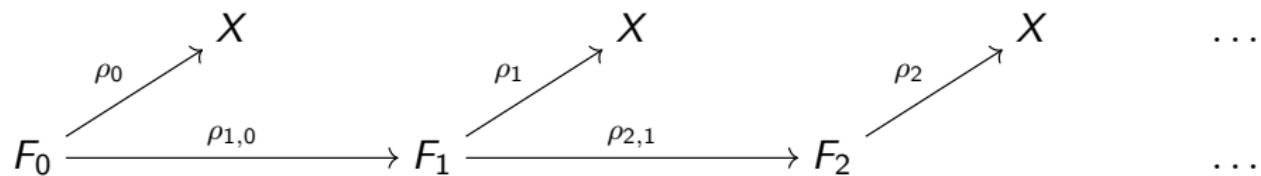
Theorem (C.-Winter)

Any separable, unital, nuclear C^ -algebra is completely isometrically completely order isomorphic to the limit of a generalized NF system via an order zero map.*

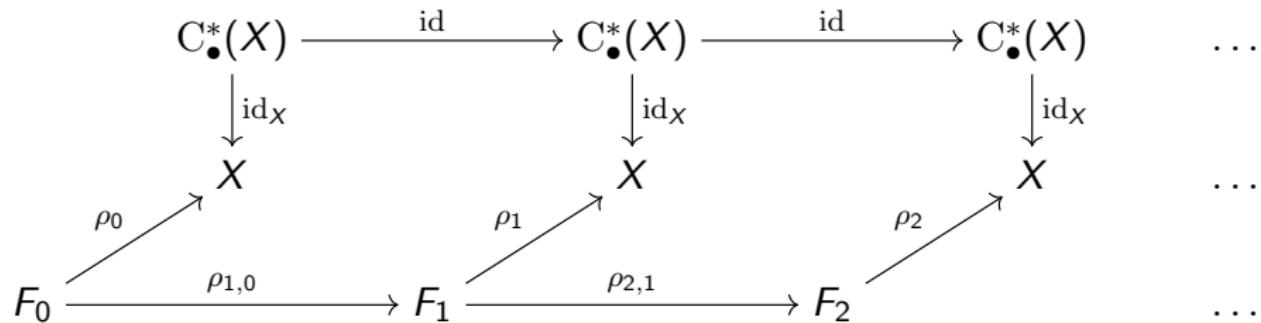
On the other hand, the limit of generalized NF system is by design completely order isomorphic to a C^* -algebra.

Given any generalized NF system, will the associated C^* -algebra $C_*^*(X)$ be **nuclear**?

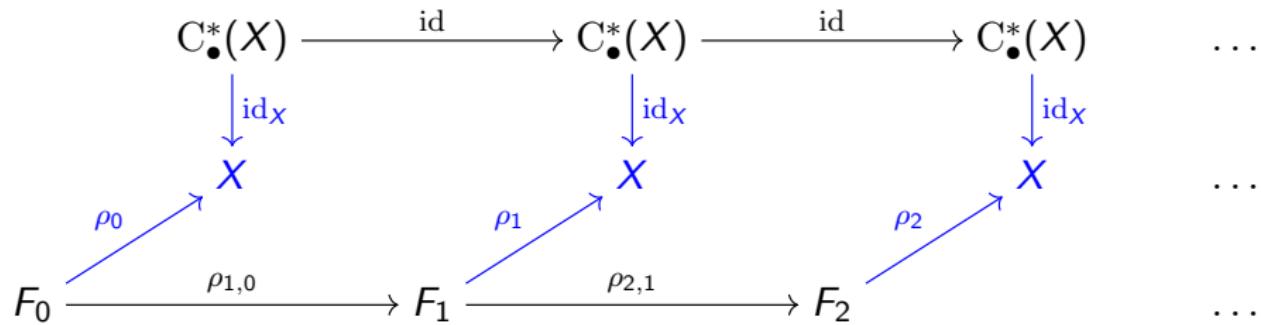
CPAP for a generalized NF system?



CPAP for a generalized NF system?

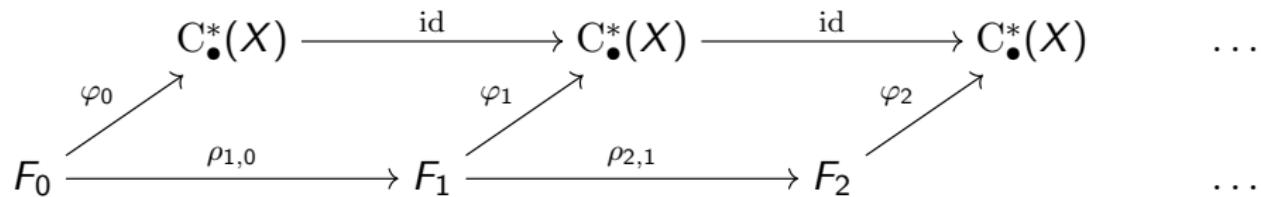


CPAP for a generalized NF system?

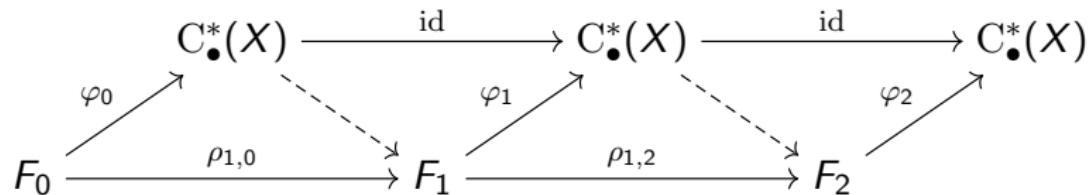


Since id_X^{-1} is cp, so are $\varphi_n := \text{id}_X^{-1} \circ \rho_n$.

CPAP for a generalized NF system?



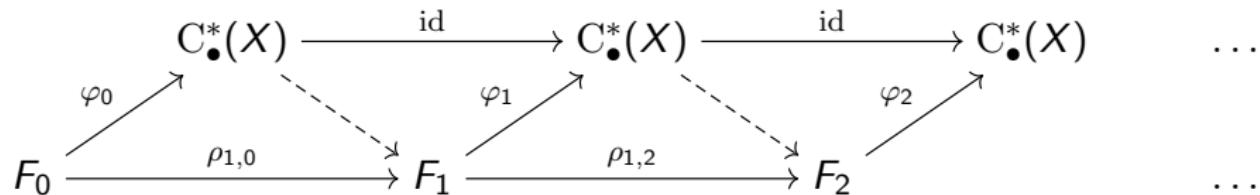
CPAP for a generalized NF system?



Question

Can we come up with the downwards maps to get a completely positive approximation?

CPAP for a generalized NF system?

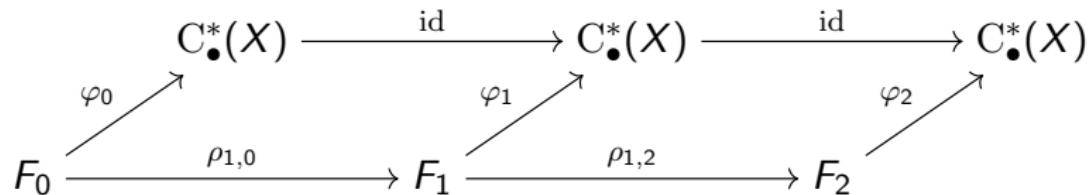


Question

Can we come up with the downwards maps to get a completely positive approximation?

[Winter] If we assume the upwards maps are decomposable into a direct sum of a bounded number of cpc order zero maps, then yes.

CPAP for a generalized NF system?



Question

Can we come up with the downwards maps to get a completely positive approximation?

Nonetheless, this picture fits perfectly into Ozawa and Sato's "one-way CPAP," which then tells us that $C_\bullet^*(X)^{**}$ is injective.

CPAP for a generalized NF system?

$$\begin{array}{ccccccc} & & C^*_\bullet(X) & \xrightarrow{\text{id}} & C^*_\bullet(X) & \xrightarrow{\text{id}} & C^*_\bullet(X) \\ & \varphi_0 \nearrow & & & \varphi_1 \nearrow & & \varphi_2 \nearrow \\ F_0 & \xrightarrow{\rho_{1,0}} & F_1 & \xrightarrow{\rho_{1,2}} & F_2 & & \dots \end{array}$$

Question

Can we come up with the downwards maps to get a completely positive approximation?

Nonetheless, this picture fits perfectly into Ozawa and Sato's "one-way CPAP," which then tells us that $C^*_\bullet(X)^{**}$ is injective.

Using again Connes' theorem, we can conclude that $C^*_\bullet(X)^{**}$ is semi-discrete, and hence that $C^*_\bullet(X)$ is nuclear.

Nuclear C^* -algebras from limits of generalized NF systems

Theorem (C.-Winter)

The inductive limit X of a generalized NF system is completely order isomorphic to a unital nuclear C^ -algebra $C_\bullet^*(X)$ via an completely isometric cp order zero map $\text{id}_X : C_\bullet^*(X) \rightarrow X \subset F_\infty$.*

Removing quasidiagonality

Recall Blackadar and Kirchberg's characterization of NF algebras as the separable nuclear quasidiagonal C^* -algebras:

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear and quasidiagonal.*
2. *A is $*$ -isomorphic to an NF algebra.*

Removing quasidiagonality

Recall Blackadar and Kirchberg's characterization of NF algebras as the separable nuclear quasidiagonal C^* -algebras:

Theorem (Blackadar-Kirchberg)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear and quasidiagonal.*
2. *A is $*$ -isomorphic to an NF algebra.*

By replacing asymptotic multiplicativity with asymptotic order zero, we can drop “quasidiagonal.”

Theorem (C.-Winter)

The following are equivalent for a separable C^ -algebra A :*

1. *A is nuclear.*
2. *A is completely isometrically completely order isomorphic to the limit of a generalized NF system via an order zero map.*

A wide-angle photograph of a coastal landscape. In the foreground, dark blue ocean water with small white-capped waves stretches across the frame. A low-lying green coastal strip with sparse vegetation runs along the water's edge. Behind this, a range of mountains rises, their slopes covered in dense green vegetation. The mountains are partially obscured by a layer of low-hanging white clouds, with the peaks themselves appearing dark and misty. The sky above the clouds is a clear, pale blue.

Thank you.

Epilogue: Technical Details

Encoding (C^*)

The task is to encode (C^*) into a system

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

of cpc maps between finite dimensional C^* -algebras.

Encoding (C^*)

The task is to encode (C^*) into a system

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots$$

of cpc maps between finite dimensional C^* -algebras.

We want conditions on the system which guarantee that we have an element $e \in (F_\infty)_+^1$ so that the limit X together with e satisfy

$$(C^*) \left\{ \begin{array}{l} 1. \quad e \in X' \cap X \\ 2. \quad X^2 = eX, \text{ and} \\ 3. \quad e \text{ is an order unit for } X. \end{array} \right.$$

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

- **asymptotically coherent**, which guarantees that $(\rho_n(e_n))_n \subset X$ is Cauchy,

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

- **asymptotically coherent**, which guarantees that $(\rho_n(e_n))_n \subset X$ is Cauchy, and
- **asymptotically central**, which guarantees that $e := \lim_n \rho_n(e_n)$ commutes with X .

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

- **asymptotically coherent**, which guarantees that $(\rho_n(e_n))_n \subset X$ is Cauchy, and
- **asymptotically central**, which guarantees that $e := \lim_n \rho_n(e_n)$ commutes with X .

To ensure e is an order unit for X , we require that $(e_n)_n$ is an

- **asymptotic uniform order unit**, which guarantees that $\|\rho_n(x)\|e \geq \rho_n(x)$ for every $n \geq 0$, $x = x^* \in F_n$.

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

- **asymptotically coherent**, which guarantees that $(\rho_n(e_n))_n \subset X$ is Cauchy, and
- **asymptotically central**, which guarantees that $e := \lim_n \rho_n(e_n)$ commutes with X .

To ensure e is an order unit for X , we require that $(e_n)_n$ is an

- **asymptotic uniform order unit**, which guarantees that $\|\rho_n(x)\|e \geq \rho_n(x)$ for every $n \geq 0$, $x = x^* \in F_n$.

Under these three assumptions, we get a positive contraction $e \in X' \cap X$ that is an order unit for X .

An approximately central order unit

To find a positive contraction $e \in X \cap X'$, we need a sequence $(e_n)_n \in \prod_n (F_n)_+^1$ that is

- **asymptotically coherent**, which guarantees that $(\rho_n(e_n))_n \subset X$ is Cauchy, and
- **asymptotically central**, which guarantees that $e := \lim_n \rho_n(e_n)$ commutes with X .

To ensure e is an order unit for X , we require that $(e_n)_n$ is an

- **asymptotic uniform order unit**, which guarantees that $\|\rho_n(x)\|e \geq \rho_n(x)$ for every $n \geq 0$, $x = x^* \in F_n$.

Under these three assumptions, we get a positive contraction $e \in X' \cap X$ that is an order unit for X .

Let's call such a sequence an **asymptotically central order unit**.

Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ($\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$),

Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ($\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$), which translates to $X^2 = eX$.

Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ($\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$), which translates to $X^2 = eX$.

We arrange for this by requiring that our system be

- asymptotically order zero with respect to $(e_n)_n$.

This condition tells us how to build, for any $k \geq 0$ and $x, y \in F_k$, an element $z \in \overline{\bigcup_n \rho_n(F_n)}$ so that $ez = \rho_k(x)\rho_k(y)$.

Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ($\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$), which translates to $X^2 = eX$.

We arrange for this by requiring that our system be

- asymptotically order zero with respect to $(e_n)_n$.

This condition tells us how to build, for any $k \geq 0$ and $x, y \in F_k$, an element $z \in \overline{\bigcup_n \rho_n(F_n)}$ so that $ez = \rho_k(x)\rho_k(y)$.

It turns out this is enough to get $X^2 = eX$.

Asymptotically order zero

With a designated “unit,” we want our system to capture the unital definition of order zero ($\psi(a)\psi(b) = \psi(1)\psi(ab) \forall a, b \in A$), which translates to $X^2 = eX$.

We arrange for this by requiring that our system be

- asymptotically order zero with respect to $(e_n)_n$.

This condition tells us how to build, for any $k \geq 0$ and $x, y \in F_k$, an element $z \in \overline{\bigcup_n \rho_n(F_n)}$ so that $ez = \rho_k(x)\rho_k(y)$.

It turns out this is enough to get $X^2 = eX$.

Remark

Just as with order zero maps, if these maps are asymptotically unital (i.e. $\|e_n - 1_{F_n}\| \rightarrow 0$), then the resulting sequence is asymptotically multiplicative, and we land back in the NF setting.

Generalized NF systems

(Working title)

Definition (C.-Winter)

A generalized NF system $(F_n, \rho_{m,n}, e_n)$ consists of a sequence $(F_n)_n$ of finite dimensional C^* -algebras with cpc connecting maps

$$F_0 \xrightarrow{\rho_{1,0}} F_1 \xrightarrow{\rho_{2,1}} F_2 \rightarrow \dots,$$

that are asymptotically order zero with respect to an asymptotically central order unit $(e_n)_n \in \prod_n (F_n)_+^1$.

One Way CPAP

Theorem (Sato, Ozawa)

A C^* -algebra is nuclear iff there exists a net $(\rho_\lambda : F_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of cpc maps from finite dimensional C^* -algebras such that the induced cpc map

$$\begin{array}{ccc} \prod_\lambda F_\lambda & \xrightarrow{(\rho_\lambda)_\lambda} & \ell^\infty(\Lambda, A) \\ \downarrow & & \downarrow \\ \prod_\lambda F_\lambda / \bigoplus_\lambda F_\lambda & \xrightarrow{\Phi} & \ell^\infty(\Lambda, A) / c_0(\Lambda, A) \end{array} \quad \text{satisfies } A^1 \subset \Phi \left(\left(\frac{\prod_\lambda F_\lambda}{\bigoplus_\lambda F_\lambda} \right)^1 \right).$$

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is an order unit for $X \subset B$.

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is an order unit for $X \subset B$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ satisfying

$$xy = e(x \bullet y) \quad \forall x, y \in X$$

so that (X, \bullet) is a $*$ -algebra with unit e .

Theorem (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is an order unit for $X \subset B$.

Then there is an associative bilinear map $\bullet : X \times X \rightarrow X$ satisfying

$$xy = e(x \bullet y) \quad \forall x, y \in X$$

so that (X, \bullet) is a $*$ -algebra with unit e . Moreover, there exists a pre- C^* -norm $\|\cdot\|_\bullet$ on (X, \bullet) .

We denote the C^* -algebra $(\overline{X}^{\|\cdot\|_\bullet}, \bullet, \|\cdot\|_\bullet)$ by $C_\bullet^*(X)$.

An associative bilinear map

Suppose $X \subset B$ arises as the image of a cpc order zero map $\theta : C \rightarrow B$ from a unital C^* -algebra C .

An associative bilinear map

Suppose $X \subset B$ arises as the image of a cpc order zero map $\theta : C \rightarrow B$ from a unital C^* -algebra C . Then the assignment

$$(\theta(a), \theta(b)) \mapsto \theta(ab) =: \theta(a) \bullet \theta(b)$$

defines an associative bilinear map $\bullet : \theta(C) \times \theta(C) \rightarrow \theta(C)$, which satisfies

$$\theta(a)\theta(b) = \theta(1_C)\theta(ab) = \theta(1_C)(\theta(a) \bullet \theta(b))$$

for all $\theta(a), \theta(b) \in \theta(C)$.

An associative bilinear map

Suppose $X \subset B$ arises as the image of a cpc order zero map $\theta : C \rightarrow B$ from a unital C^* -algebra C . Then the assignment

$$(\theta(a), \theta(b)) \mapsto \theta(ab) =: \theta(a) \bullet \theta(b)$$

defines an associative bilinear map $\bullet : \theta(C) \times \theta(C) \rightarrow \theta(C)$, which satisfies

$$\theta(a)\theta(b) = \theta(1_C)\theta(ab) = \theta(1_C)(\theta(a) \bullet \theta(b))$$

for all $\theta(a), \theta(b) \in \theta(C)$.

Without an order zero map, we cannot say exactly what $x \bullet y$ is for $x, y \in X$, but we can still say that it exists.

An associative bilinear map

Proposition (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X'$, and
2. e is an order unit for $X \subset B$.

An associative bilinear map

Proposition (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X'$, and
2. e is an order unit for $X \subset B$.

Then for any $x, y \in X$,

1. $x = y \Leftrightarrow e^n x = e^n y$ for some $n \geq 1$,

An associative bilinear map

Proposition (C.-Winter)

Let B be a C^* -algebra, $X \subset B$ a closed self-adjoint subspace, and $e \in B_+^1$ a distinguished element satisfying

1. $e \in X'$, and
2. e is an order unit for $X \subset B$.

Then for any $x, y \in X$,

1. $x = y \Leftrightarrow e^n x = e^n y$ for some $n \geq 1$,
2. $x = x^* \Leftrightarrow (ex) = (ex)^*$, and
3. $x \geq 0 \Leftrightarrow ex \geq 0$,

where the multiplication is in B .

An associative bilinear map

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is a matrix order unit for $X \subset B$.

An associative bilinear map

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is a matrix order unit for $X \subset B$.

(3) \Rightarrow for each $x, y \in X$ there exists $x \bullet y \in X$ such that

$$xy = e(x \bullet y).$$

An associative bilinear map

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is a matrix order unit for $X \subset B$.

(3) \Rightarrow for each $x, y \in X$ there exists $x \bullet y \in X$ such that

$$xy = e(x \bullet y).$$

(1) + (2) + (4) $\Rightarrow x \bullet y$ is the unique such element:

$$ez = xy = e(x \bullet y) \Rightarrow z = x \bullet y.$$

An associative bilinear map

Let B be a C^* -algebra, $X \subset B$ a self-adjoint subspace, and $e \in X$ a distinguished element satisfying

1. $0 \leq e \leq 1$
2. $e \in X'$
3. $X^2 = eX$, and
4. e is a matrix order unit for $X \subset B$.

(3) \Rightarrow for each $x, y \in X$ there exists $x \bullet y \in X$ such that

$$xy = e(x \bullet y).$$

(1) + (2) + (4) $\Rightarrow x \bullet y$ is the unique such element:

$$ez = xy = e(x \bullet y) \Rightarrow z = x \bullet y.$$

And moreover this assignment defines an associative bilinear map making (X, \bullet) into a $*$ -algebra.

A C*-norm

A C^* -norm

Suppose $e \in X \subset B$ was invertible.

A C*-norm

Suppose $e \in X \subset B$ was invertible. Then we define a pre-C*-norm on X by

$$\|x\|_{\bullet} := \|e^{-1}x\|_B$$

for $x \in X$ would give us a C*-norm with respect to \bullet .

A C*-norm

Suppose $e \in X \subset B$ was invertible. Then we define a pre-C*-norm on X by

$$\|x\|_{\bullet} := \|e^{-1}x\|_B$$

for $x \in X$ would give us a C*-norm with respect to \bullet . Indeed,

$$\begin{aligned}\|x^* \bullet x\|_{\bullet} &= \|e^{-1}(x^* \bullet x)\|_B = \|e^{-1}e^{-1}e(x^* \bullet x)\|_B \\ &= \|e^{-1}e^{-1}x^*x\|_B = \|(e^{-1}x)^*e^{-1}x\|_B \\ &= \|e^{-1}x\|_B^2 = \|x\|_{\bullet}^2.\end{aligned}$$

A C^* -norm

Suppose $e \in X \subset B$ was invertible. Then we define a pre- C^* -norm on X by

$$\|x\|_{\bullet} := \|e^{-1}x\|_B$$

for $x \in X$ would give us a C^* -norm with respect to \bullet . Indeed,

$$\begin{aligned}\|x^* \bullet x\|_{\bullet} &= \|e^{-1}(x^* \bullet x)\|_B = \|e^{-1}e^{-1}e(x^* \bullet x)\|_B \\ &= \|e^{-1}e^{-1}x^*x\|_B = \|(e^{-1}x)^*e^{-1}x\|_B \\ &= \|e^{-1}x\|_B^2 = \|x\|_{\bullet}^2.\end{aligned}$$

In general e has an approximate inverse in B , i.e. a sequence $(h_k(e))_{k \in \mathbb{N}}$ in B where $h_k \in C_0((0, 1])$ with $th_k(t) \rightarrow 1$ pointwise.

A C^* -norm

Suppose $e \in X \subset B$ was invertible. Then we define a pre- C^* -norm on X by

$$\|x\|_{\bullet} := \|e^{-1}x\|_B$$

for $x \in X$ would give us a C^* -norm with respect to \bullet . Indeed,

$$\begin{aligned}\|x^* \bullet x\|_{\bullet} &= \|e^{-1}(x^* \bullet x)\|_B = \|e^{-1}e^{-1}e(x^* \bullet x)\|_B \\ &= \|e^{-1}e^{-1}x^*x\|_B = \|(e^{-1}x)^*e^{-1}x\|_B \\ &= \|e^{-1}x\|_B^2 = \|x\|_{\bullet}^2.\end{aligned}$$

In general e has an approximate inverse in B , i.e. a sequence $(h_k(e))_{k \in \mathbb{N}}$ in B where $h_k \in C_0((0, 1])$ with $th_k(t) \rightarrow 1$ pointwise. We define our pre- C^* -norm $\|\cdot\|_{\bullet} : X \rightarrow B$ for each $x \in X$ by

$$\|x\|_{\bullet} := \lim_k \|h_k(e)x\|_B.$$

A C^* -norm

Suppose $e \in X \subset B$ was invertible. Then we define a pre- C^* -norm on X by

$$\|x\|_{\bullet} := \|e^{-1}x\|_B$$

for $x \in X$ would give us a C^* -norm with respect to \bullet . Indeed,

$$\begin{aligned}\|x^* \bullet x\|_{\bullet} &= \|e^{-1}(x^* \bullet x)\|_B = \|e^{-1}e^{-1}e(x^* \bullet x)\|_B \\ &= \|e^{-1}e^{-1}x^*x\|_B = \|(e^{-1}x)^*e^{-1}x\|_B \\ &= \|e^{-1}x\|_B^2 = \|x\|_{\bullet}^2.\end{aligned}$$

In general e has an approximate inverse in B , i.e. a sequence $(h_k(e))_{k \in \mathbb{N}}$ in B where $h_k \in C_0((0, 1])$ with $th_k(t) \rightarrow 1$ pointwise. We define our pre- C^* -norm $\|\cdot\|_{\bullet} : X \rightarrow B$ for each $x \in X$ by

$$\|x\|_{\bullet} := \lim_k \|h_k(e)x\|_B.$$

